Title: | Numerical study of the hydrodynamic stability of a wind-turbine airfoil with a laminar separation bubble under free-stream turbulence | Authors: | Fava, Thales C. L. Lobo, Brandon A. Nogueira, P.A.S Schaffarczyk, Alois P. Breuer, Michael Henningson, Dan S. Hanifi, Ardeshir |
Language: | eng | Subject (DDC): | 000 Informatik, Information & Wissen, allgemeine Werke 500 Naturwissenschaften 600 Technik |
Issue Date: | Aug-2023 | Publisher: | AIP Publishing | Document Type: | Article | Source: | Phys. Fluids 35, 084104 (2023); doi: 10.1063/5.0159783 | Journal / Series / Working Paper (HSU): | Physics of Fluids | Volume: | 35 | Issue: | 8 | Page Start: | 084104-1 | Page End: | 084104-25 | Publisher Place: | Maryland | Abstract: | The interaction of several instabilities and the influence of free-stream turbulence on laminar-turbulent transition on a 20% thick wind-turbine blade section with a laminar separation bubble (LSB) are investigated with wall-resolved large-eddy simulations (LES). Turbulence intensities (TI) of 0%, 2.2%, 4.5%, 8.6%, and 15.6% at chord Reynolds number 105 are considered. Linear receptivity occurs for the most energetic disturbances; high-frequency perturbations are excited via non-linear mechanisms for TI >= 8:6%. Unstable Tollmien–Schlichting (TS) waves appear in the inflectional flow region for TI <= 4:5%, shifting to inviscid Kelvin–Helmholtz (KH) modes upon separation and forming spanwise rolls. Sub-harmonic secondary instability occurs for TI = 0%, with rolls intertwining before transition. Streaks spanwise modulate the rolls and increase their growth rates with TI for TI <= 4:5%, reducing separation and shifting transition upstream. The TI = 4:5% case presents the highest perturbations, leading to the smallest LSB and most upstream transition. Earlier inception of TS/KH modes occurs on low-speed streaks, inducing premature transition. However, for TI = 8:6%, the effect of the streaks is to stabilize the attached mean flow and front part of the LSB. This occurs due to the near-wall momentum deficit alleviation, leading to the transition delay and larger LSB than TI = 4:5%. This also suppresses separation and completely stabilizes TS/KH modes for TI = 15:6%. Linear stability theory predicts well the modal evolution for TI <= 8:6%. Optimal perturbation analysis accurately computes the streak development upstream of the inflectional flow region but indicates higher amplification than LES downstream due to the capture of low-frequency, oblique modal instabilities from the LSB. Only low-amplitude [O(1%)] streaks displayed exponential growth in the LES since non-linearity precludes the appearance of these modes. |
Organization Units (connected with the publication): | Strömungsmechanik | Publisher DOI: | 10.1063/5.0159783 |
Appears in Collections: | 3 - Reported Publications |
Show full item record
CORE Recommender
User Tools
Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.