Title: | Semi–Direct Numerical Simulation of a Czochralski Melt Flow on High–Performance Computers | Authors: | Enger, Sven Schäfer, Frank Breuer, Michael Durst, Franz |
Language: | eng | Subject (DDC): | 000 Informatik, Information & Wissen, allgemeine Werke 500 Naturwissenschaften 600 Technik |
Issue Date: | 2002 | Publisher: | Springer | Document Type: | Book Part | Source: | Enger, S., Schäfer, F., Breuer, M., Durst, F. (2002). Semi-Direct Numerical Simulation of a Czochralski Melt Flow on High-Performance Computers. In: Breuer, M., Durst, F., Zenger, C. (eds) High Performance Scientific And Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55919-8_22 | Journal / Series / Working Paper (HSU): | Lecture Notes in Computational Science and Engineering | Volume: | 21 | Page Start: | 201 | Page End: | 212 | Published in (Book): | High Performance Scientific And Engineering Computing | Publisher Place: | Berlin | Conference: | 3rd Int. FORTWIHR Conf. 2001, High–Performance Scientific and Engineering Computing; Methods, Developmemts, and Applications, Erlangen, Germany, March 12–14, 2001 | Abstract: | The three-dimensional and time-dependent turbulent flow field and heat transfer of the melt in a Czochralski crystal growth process were predicted using an efficient block-structured finite-volume Navier-Stokes solver. From semi-direct numerical simulations, detailed information of instantaneous and time-averaged quantities were obtained. Two different crucible rotation rates were considered,,f2c = ---2 rpm and ---5 rpm, whereas the crystal rotation was kept constant at,f29 = 20 rpm. Exact boundary conditions for the temperature were obtained from experiments. The time-averaged results are discussed and it is shown that, due to velocity and temperature fluctuations underneath the crystal, the growth conditions are superior at higher crucible rotation rates. The main reason for this is the stabilizing effect of the centrifugal forces. Furthermore, it is shown that the boundary layer below the crystal is very thin, so that the influence on the bulk flow is negligible. Rotation will mainly maintain the circular shape of the crystal and ensure the homogeneous distribution of dopants. |
Organization Units (connected with the publication): | Strömungsmechanik | ISBN: | 978-3-540-42946-3 | Publisher DOI: | 10.1007/978-3-642-55919-8_22 |
Appears in Collections: | 6 - Bibliographic Data - Publications of the HSU Researchers (before HSU) |
Show full item record
CORE Recommender
User Tools
Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.