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ABSTRACT

The integration of machine learning (ML) into manufacturing pro-
cesses is crucial for optimizing efficiency, reducing costs, and en-
hancing overall productivity. This paper proposes a comprehensive
ML pipeline tailored for manufacturing applications, leveraging the
widely recognized Cross-Industry Standard Process for Data Mining
(CRISP-DM) as its foundational framework.
The proposed pipeline consists of key phases, namely business under-
standing, use case selection and specification, data integration, data
preparation, modelling, deployment, and certification. These are de-
signed to meet the unique requirements and challenges associated with
ML implementation in manufacturing settings. Within each phase,
sub-topics are defined to provide a granular understanding of the work-
flow. Responsibilities are clearly outlined to ensure a structured and
efficient execution, promoting collaboration among stakeholders. Fur-
ther, the input and output of each phase are defined.
The methodology outlined in this research not only enhances the appli-
cability of CRISP-DM in the manufacturing domain but also serves
as a guide for practitioners seeking to implement ML solutions in
a systematic and well-defined manner. The proposed pipeline aims
to streamline the integration of ML technologies into manufacturing
processes, facilitating informed decision-making and fostering the
development of intelligent and adaptive manufacturing systems.
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1 Introduction

In the domain of modern manufacturing and Industry 4.0, the integration of machine
learning (ML) has emerged as a driver of efficiency and innovation in manufacturing
and across industries [1].ML has proven effective across a spectrum of applications
in manufacturing, including process optimization, monitoring, control, and predictive
maintenance [2]. The integration of ML techniques into manufacturing processes
comprises an direct impact on physical systems. This transformative shift extends beyond
automation, since ML systems have the capability to adapt a dynamic manufacturing
environment. For example, in adaptive production workers receive real-time insights and
are enabled to optimize the manufacturing process. This not only optimizes processes,
but also enhances product quality, and minimizes downtime. However, the integration
of ML into manufacturing also comprehends unique challenges such as certification of
systems, safety protocols, guarantees of performance and reliability. The integration of
ML into existing, but also new, processes has its challenges [1] that can be eased by
ML pipelines. They serve as a systematic approach to streamline the end-to-end process
of building, training, and deploying ML models. By delineating a clear path for the
development of ML models, pipelines not only streamline processes but also enhance
scalability and reliability within manufacturing environments.

1.1 Machine Learning Pipeline: CRISP-DM and Other Approaches

The Cross-Industry Standard Process for Data Mining (CRISP-DM; [3]) has long been
recognized as a robust framework for guiding the development of data mining and ML
projects. The development of CRISP-DM involved collaboration funded by the EU
in the 90s, including prominent companies. This ensures that the standard is shaped
by diverse perspectives, best practices, and real-world experiences, making it a robust
framework for various industries that is still widely used. CRISP-DM consists of
the following phases: Business understanding, data understanding, data preparation,
modelling, evaluation, and deployment.
While CRISP-DM is a widely used and recognized framework, there are several alterna-
tive frameworks and methodologies, each with its own strengths and focus areas. Some
notable alternatives are:
ASUM-DM (Analytics Solutions Unified Method for Data Mining/Predictive Ana-
lytics, [4]) is a standard process model developed by IBM for the application of data
mining and predictive analytics. It serves as a revised and expanded version of CRISP-
DM. ASUM-DM comprises five phases (analyze, design, configure & build, deploy,
and operate & optimize) along with a project management stream. CRISP-ML(Q)
(Cross-Industry Standard Process for the development of ML applications with Quality
assurance methodology; [5]) is an extension of the CRISP-DM process, that includes
two more phases: quality assurance for ML applications and monitoring & maintenance.
In focus here are the identification of risks and dealing the the quality of ML applications.
KDD (Knowledge Discovery in Databases; [6]) is an foundational methodology from
the 90s that encompasses the entire process of knowledge discovery from data, including
data selection, preprocessing, data trans-formation, data mining and interpretation lead-
ing to knowledge. It serves as a broader umbrella under which CRISP-DM and other
methodologies operate. SEMMA (Sample, Explore, Modify, Model, Assess; [7, 8]) de-
veloped by SAS (Statistical Analysis System) that shares similarities with CRISP-DM.
It outlines the following sequence of steps: data sampling, data exploration, modification
of features, model building, and assessing their value according to the selected metrics.
DMME (Data Mining Methodology for Engineering Applications; [9]) stands as a com-
prehensive extension of the CRISP-DM model, offering enhancements on the technical
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part of the pipeline. Future work here suggests a more detailed definition of sub-tasks,
interconnections and responsibilities.
This is a selective overview, considering the manifold of pipelines and processes designed
for specific applications. Notably, some remain unpublished, like the very comprehen-
sive DMIE [10], often documented only in theses. [11] and [12] compare multiple ML
pipelines, providing insights into their strengths, weaknesses, and overall performance.
[11] critiques CRISP-DM for neglecting tasks in project management, organization,
and quality in data mining engineering, proposing an own process model. A more recent
initiative describes the Data Science Process Model (DASC-PM, [13]) with the main
objective to organize existing knowledge. The newest version concentrates on the project
initiation phase, emphasizing the early establishment of crucial decisions and framework
conditions for data science activities.
In conclusion, the state of the art in ML pipelines reflects a holistic approach. As the
field evolves, data scientists continue to adapt and enhance each phase of the pipeline to
meet the challenges and opportunities presented by the dynamic area of ML and their
specific application domain.

1.2 Challenges of Machine Learning Pipelines in Manufacturing

One of the most compelling aspects of CRISP-DM and other similar frameworks is the
fact that is was designed to be industry agnostic. Its design allows it to be used in a large
variety of different applications [14], which explains its popularity and wide adoption
across industries. Conversely, peculiarities of specific industries are not considered and
can therefore not be adequately served by existing process frameworks.
The manufacturing domain has significantly profited from advances in data science and
ML technology in recent time [15]. The increasing volume of data collected during
production processes is used in order to decrease machine downtime and optimize pro-
cessing times while at the same time improving product quality [16]. However, data
driven applications in manufacturing are characterized by complex interactions between
the physical and virtual world [17]. This leads to high reliability and safety requirements,
as well as a high potential risk. At the same time, data sources are extensive, multimodal
and often require deep process understanding, involving numerous stakeholders, to make
them accessible for ML applications [18].
KRAUSS ET AL. identified unclear application areas, the availability of comprehensive,
open datasets, and the lack of manufacturing specific development frameworks as the
key challenges slowing the spread of ML use cases in manufacturing today [18]. They
introduce a CRISP-DM based framework, in the form of the ML Pipeline in Production,
which aims to address some key requirements of manufacturing environments. For exam-
ple, by introducing two additional pipeline phases, use case selection and certification,
as well as introducing superficial roles, describing the stakeholders for different phases
of the pipeline [18].
While guidance on the practical implementation is given, some crucial aspects, like
responsibilities within the phases and their output, are not considered by the authors.
Drawing from lessons learned in conducted ML projects in the manufacturing domain,
the proposed pipeline builds on the existing framework and extends it by addressing the
aforementioned restrictions, as well as further refining the definitions of the pipeline
phases. The extended pipeline therefore aims to help bridge the gap between theory and
practical application even further and therefore facilitate the use of ML in the domain.
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2 Machine Learning Pipeline for Manufacturing

This section introduces the proposed ML Pipeline, emphasizing its role as a compre-
hensive framework for guiding data mining and ML projects within the manufacturing
domain.

2.1 General Overview & Contributions

The proposed ML pipeline provides a structured and collaborative approach, integrating
the expertise of various roles, to facilitate the successful development, deployment,
and ongoing maintenance of ML models. The pipeline as depicted in Figure 1 spans
from use case selection & specification to data integration, data preparation, modeling,
deployment and certification. It provides clarity on responsibilities to promote cross-
functional collaboration, and to deliver robust and effective ML solutions tailored to use
cases from the production domain.

Figure 1: Overview over the proposed ML pipeline.

The pipeline therefore extends existing approaches used in the manufacturing sector
in two key areas: Responsibilities and results. This is done by defining a responsible
person and persons that are participating or have a consulting function for each of
the pipeline sub-steps. This ensures that responsibilities are optimally allocated and
provides accountability for all stakeholders and pipeline phases. These roles include
persons directly involved in the pipeline, such as data scientists or engineers, as well as
supporting roles such as machine operators and process experts.
Additionally, for each phase, the expected results, e.g., a document, concept or certain
file, are defined. This improves the accessibility and transparency of the pipeline. As
the goal of each sub-step is well defined, the transfer of the pipeline from concept into
concrete ML projects is simplified. Furthermore, the expected results can be used as a
reporting tool to track the progress of the active pipeline phase.

In both cases, special attention was given to the peculiarities of the manufacturing
domain, such as the interplay of experts from different fields with different educational
backgrounds and the strong feedback loop between the digital and physical world present
in cyber physical systems (e.g. compared to recommender-systems in online shops).

2.2 Responsibilities and Results at each Sub-Step

The roles specified by the pipeline, as well as all sub-steps and their results are described
in detail in the following.
The data scientist develops and applies machine learning models to extract insights from
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data. The data engineer designs and maintains the infrastructure for collecting and
storing data. The IT professional ensures the integration and security of the ML pipeline
within the overall IT architecture. The operator oversees the operation and maintenance
of the machines. The process and production expert oversees the production and
provides insights into process and product data.

Use Case Selection & Specification: USE CASE SELECTION

Responsible
Depends on the use case. Typically data
scientist, data engineer and experts.

Participating
All

Results
Prioritized list of use cases with an selection of promising use case to be implemented.

Use Case Selection & Specification: USE CASE SPECIFICATION

Responsible
Depends on the use case. Typically data
scientist, data engineer and experts.

Participating
All

Results
Definition of the goal of the service to be developed and of requirements and of the
(qualitative) metrics. Prerequisites for implementation (data basis) are set. The scope is
planned (capacity and hardware resource planning) and definition of termination criteria
is finalized.

Data Integration: EMBEDDING IN EXISTING IT LANDSCAPE

Responsible
Data Engineer

Participating
Data Scientist, IT professional

Results
Concept how to embed the ML system in the existing IT landscape considering interac-
tions with e.g. MES & IIoT, other existing or planned services, and enable access to the
relevant data bases.

Data Integration: ESTABLISHMENT OF DATA MODELS, SCHEMES AND RELA-
TIONSHIPS

Responsible
Data Engineer

Participating
Data Scientist, Operator, Production Ex-
pert, Process Expert

Results
Definition of existing or new data models.

Data Integration: REALIZATION OF DATA INTEGRATION

Responsible
Data Engineer

Participating
None

Results
Data defined in data model are available, accessible and prepared (e.g., basic synchroni-
sation (of time),standardized nomenclature and units according to parameter list).
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Data Preparation: EXPLORATORY DATA ANALYSIS

Responsible
Data Scientist, Data Engineer

Participating
Operator, Production Expert and Process
Expert

Results
Aggregated report about the data such as statistical analysis and visualizations. Assess-
ment of the data quality and quantity. Definition of termination criteria based on to
achieved data (e.g., quality or quantity).

Data Preparation: DATA PRE-PROCESSING

Responsible
Data Scientist and Data Engineer

Participating
Operator, Production Expert, Process Ex-
pert

Results
Pre-processed data and ready for model development. The structural pre-processing
is done by the data engineer, while the case-related pre-processing based on prior
knowledge of the features is done by the data scientist primarily.

Data Preparation: FEATURE ENGINEERING

Responsible
Data Scientist

Participating
Data Engineer, Operator, Production Ex-
pert, Process Expert

Results
New features developed for model development for this use case based on the domain
knowledge of the use case. In addition, the feature extraction is performed.

Modeling: ALGORITHM SELECTION

Responsible
Data Scientist

Participating
None

Results
Determined set of suitable algorithms for this use case.

Modeling: HYPERPARAMETER TUNING

Responsible
Data Scientist

Participating
None

Results
Strategies for efficient and automated hyperparameter-tuning, suitable for the selected
algorithm.

Modeling: TRAINING

Responsible
Data Scientist

Participating
Data Engineer, Operator, Production Ex-
pert, Process Expert

Results
Determine the conditions for the training. This covers the decision on the data split or
the usage of cross validation and the definition of training parameters such as learning
rates. The technical metrics to evaluate the model performance in accordance to the
qualitative requirements for the use case are set.
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Modeling: ACCEPTANCE TEST

Responsible
Data Scientist

Participating
Data Engineer, Operator, Production Ex-
pert, Process Expert

Results
Selection of the final algorithm, hyper-parameter and training parameters and evaluation
of the model performance in alignment with use case requirements. All is validated with
respect to the existing process.

Deployment: DEPLOYMENT DESIGN

Responsible
Data Engineer

Participating
Data Scientist, IT professional

Results
Selection of the deployment pipeline, e.g. the usage of Docker or other process managers,
and the final embedding into the overall IT landscape as planned in the earlier phases.

Deployment: PRODUCTIONIZING & TESTING

Responsible
Data Engineer, Data Scientist

Participating
Operator, Production Expert, Process Ex-
pert

Results
Performed integration (including egde cases), penetration and performance test.

Deployment: MONITORING

Responsible
Data Scientist

Participating
Data Engineer, Operator, Production Ex-
pert, Process Expert

Results
Definition of the monitoring strategy and implementation (including retraining).

Deployment: RETRAINING

Responsible
Data Scientist

Participating
Data Engineer

Results
Definition of retraining strategy, e.g. implementation of automated retraining, based on
the defined requirements.

Certification: CERTIFICATION

Responsible
Production Expert (May be third party)

Participating
All

Results
Certification of the system. System is ready to be used.

3 Discussion and Validation

In ML projects, the participation of different roles often leads to misaligned expectations
and communication gaps [19], as well as decision-making complexities. To overcome
this, it is essential to encourage collaboration, implement clear communication, and
ensure a common project vision. CRISP-DM lacks clear definition of responsibilities
among team members and falls short regarding project management compared to e.g.,
ASUM-DM. CRISP-DM also overlooks the crucial aspect of data acquisition and does
not incorporate the concept of a proof of concept as an initial project phase.
The proposed ML pipeline ensures that every project phase aligns with the specific
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needs and challenges of the manufacturing environment. One of the key advantages is
the explicit definition of responsible roles throughout the project, by clearly outlining
the roles of five key stakeholders. In this way, the pipeline promotes a collaborative
and interdisciplinary approach. Furthermore, the pipeline provides clarity regarding the
expected output at each phase of the project. This allows for better planning in advance,
improved monitoring capabilities, and helps overcome communication challenges.
The number of iterations needed between the data preparation and modeling phases
is not specified, as it can vary significantly based on the specific use case. Use cases
involving extensive data exploration, cleaning, and feature engineering may require
additional iterations compared to simpler tasks, again emphasizing the importance of
adapting the pipeline to the requirements of each specific use case. The same is true for
the weight given to different phases. In some situations, entire phases e.g., certification
may be skipped, leading to a tailored approach based on given requirements.
Fraunhofer IPT and FFB used the ML pipeline as the structure for about 20 ML-
projects, such as various work on glass molding and laser structuring or production in
general [20, 21, 22]. The results from these projects validated the functionality of the
presented ML pipeline. In MENDE ET AL. [20] feedback from the project members
emphasized the effectiveness of the ML Pipeline through its proficient facilitation of
model development and deployment within the manufacturing domain. A notable
result was the creation of a clear communication that encouraged effective teamwork
among various groups, such as machine operators, process planners, and data scientists.
The pipeline showed its applicability to user-centred development of ML solutions by
incorporating feedback from machine operators, tailored to their specific needs in daily
operations.
Explicitly not addressed by the proposed pipeline are concrete timelines for the different
phases. The timeline for any given ML project significantly depends on the complexity
of the task at hand. However, flexibility is maintained by the pipeline to accommodate
variations in project timelines based on varying task complexities.
In summary, the integration of ML into manufacturing processes has a significant impact
on physical systems, going beyond automation to enable adaptive production. This
results in real-time insights. Hence, the implementation of a tailored ML pipeline
for manufacturing provides a structured framework facilitating the integration of ML
technologies into manufacturing operations.

4 Conclusion

In ML projects, addressing the challenges arising from diverse roles in the manufacturing
domain requires establishing a clear project management approach. The proposed
pipeline does so by complementing existing pipelines through the addition of stakeholder
responsibilities and anticipating the concrete output of the different phases. Some
aspects, like timelines or number of iterations, which are mostly use case dependent,
have purposefully been omitted. Validation across different use cases is yet to be
completed, with a basic use case already having been addressed. Ongoing efforts are
directed towards extending the validation to further scenarios, ensuring the robustness
and applicability of the proposed method to a wide array of manufacturing use cases.
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