Title: Comparison of measurements and numerical simulations of melt convection in Czochralski crystal growth of silicon
Authors: Enger, Sven
Gräbner, Oliver
Müller, Georg
Breuer, Michael  
Durst, Franz
Language: eng
Issue Date: 2001
Publisher: Elsevier
Document Type: Article
Source: In: Journal of crystal growth. - Amsterdam [u.a.] : Elsevier, ISSN 0022-0248, ZDB-ID 3043-0 - Bd. 230.2001, 1, S. 135-142, insges. 8 S.
Journal / Series / Working Paper (HSU): Journal of Crystal Growth
Volume: 230
Issue: 1
Page Start: 135
Page End: 142
Publisher Place: Amsterdam
This paper is concerned with a direct comparison of measured and predicted temperature readings in an industrial silicon Czochralski melt during real crystal growth conditions. The temperature was measured at three reading points under the crystal using a thermocouple. The predictions are based on three-dimensional time-dependent simulations of the flow and heat transfer in an identical crucible geometry. The simulations were performed using a fine grid with 1,945,600 control volumes and six geometric blocks. To improve the convergence rate and reduce the simulation time, the multigrid method was applied. Two different crucible rotation rates were considered. Minimum, maximum, and average temperature and standard deviation from numerical simulations were found to agree well with experimental data. In order to discuss overall flow mechanisms in the melt, the sampled temperatures were analyzed by performing fast Fourier transformation and comparing frequency spectra. The analysis of the transformed data showed that by applying a high resolution in space and time it is possible to predict the impact of growth parameters on the flow field. From experiments and numerical simulations it is shown that a higher crucible rotation damps the temperature fluctuations under the crystal. © 2001 Elsevier Science B.V.
Organization Units (connected with the publication): Universität Erlangen-Nürnberg
ISSN: 00220248
Publisher DOI: 10.1016/S0022-0248(01)01324-0
Appears in Collections:Publications of the HSU Researchers (before HSU)

Show full item record

CORE Recommender


checked on Dec 4, 2022

Google ScholarTM




Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.