Title: Efficient simulation of particle-laden turbulent flows with high mass loadings using LES
Authors: Breuer, Michael 
Alletto, Michael
Language: eng
Issue Date: 2012
Publisher: Elsevier
Document Type: Article
Source: In: The international journal of heat and fluid flow. - New York, NY [u.a.] : Elsevier, 1979- ; ZDB-ID: 759894-4 . - Bd. 35.2012, Seite 2-12
Journal / Series / Working Paper (HSU): International Journal of Heat and Fluid Flow
Volume: 35
Page Start: 2
Page End: 12
Publisher Place: New York
The paper is concerned with the simulation of particle-laden two-phase flows based on the Euler-Lagrange approach. The methodology developed is driven by two major requirements: (i) the necessity to tackle complex turbulent flows by eddy-resolving schemes such as large-eddy simulation; (ii) the demand to predict dispersed multiphase flows at high mass loadings. First, a highly efficient particle tracking algorithm was developed working on curvilinear, block-structured grids. Second, to allow the prediction of dense two-phase flows, the fluid-particle interaction (two-way coupling) as well as particle-particle collisions (four-way coupling) had to be taken into account. For the latter instead of a stochastic collision model, in the present study a deterministic collision model is considered. Nevertheless, the computational burden is minor owing to the concept of virtual cells, where only adjacent particles are taken into account in the search for potential collision partners. The methodology is applied to different test cases (plane channel flow, combustion chamber flow). The computational results are compared with experimental measurements and good agreement is found. © 2012 Elsevier Inc.
Organization Units (connected with the publication): Strömungsmechanik 
ISSN: 0142-727X
Publisher DOI: 10.1016/j.ijheatfluidflow.2012.01.001
Appears in Collections:3 - Publication references (only metadata)

Show full item record

CORE Recommender


checked on Feb 26, 2024

Google ScholarTM




Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.