DC FieldValueLanguage
dc.contributor.authorAlletto, Michael-
dc.contributor.authorBreuer, Michael-
dc.date.accessioned2020-06-05T09:28:37Z-
dc.date.available2020-06-05T09:28:37Z-
dc.date.issued2013-10-01-
dc.identifier.citationIn: International journal of multiphase flow. - Oxford : Pergamon Press, 1973- ; ZDB-ID: 186752-0 . - Bd. 55.2013, Seite 80-98de_DE
dc.identifier.issn03019322-
dc.description.abstractThe present paper is concerned with numerical simulations of pneumatic conveying in pipes of circular cross-section. Based on an Euler-Lagrange approach relying on the large-eddy simulation technique for the fluid flow and a particle tracking scheme accounting for all relevant elementary processes (particle rotation, transverse lift forces, inter-particle collisions, particle-wall collisions with smooth and rough walls, coupling between phases) several cases are analyzed in detail to elucidate the origin of secondary flow structures in the pipe cross-section. A smooth glass pipe and a rough steel pipe are taken into account at two different mass loadings considering a polydisperse size distribution with a number mean diameter of about 40. μm mimicking the corresponding reference experiment. After a detailed validation of the single-phase as well as the two-phase flow based on experimental and DNS data, the secondary flow structures are analyzed qualitatively and quantitatively. That confirms recently published experimental results that the secondary flow observed is of second kind. Finally, to prove that for another particle size distribution numerically investigated in the literature the secondary flow is still of second kind, rather large monodisperse inertial particles (134. μm) hitting the pipe walls with two different roughnesses are additionally simulated. The strength of the secondary flow is found to be strongly reduced for these cases compared with the polydisperse smaller particles, but the mechanism responsible for the secondary flow is the same. © 2013 Elsevier Ltd.de_DE
dc.description.sponsorshipStrömungsmechanikde_DE
dc.language.isoen_USde_DE
dc.publisherPergamon Pressde_DE
dc.relation.ispartofInternational Journal of Multiphase Flowde_DE
dc.subject.ddcDDC - Dewey Decimal Classification::000 Informatik, Wissen, Systemede_DE
dc.subject.ddcDDC - Dewey Decimal Classification::500 Naturwissenschaftende_DE
dc.subject.ddcDDC - Dewey Decimal Classification::600 Technikde_DE
dc.titlePrediction of turbulent particle-laden flow in horizontal smooth and rough pipes inducing secondary flowde_DE
dc.typeArticlede_DE
dc.identifier.doi10.1016/j.ijmultiphaseflow.2013.04.009-
dc.identifier.scopus2-s2.0-84878460774-
hsu.accessrights.dnbfreede_DE
dcterms.bibliographicCitation.volume55de_DE
dcterms.bibliographicCitation.pagestart80de_DE
dcterms.bibliographicCitation.pageend98de_DE
dcterms.bibliographicCitation.originalpublisherplaceOxfordde_DE
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84878460774-
dc.identifier.urlhttps://ub.hsu-hh.de/DB=1/XMLPRS=N/PPN?PPN=756442419-
local.submission.typeonly-metadatade_DE
item.grantfulltextnone-
item.fulltext_sNo Fulltext-
item.languageiso639-1en_US-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptStrömungsmechanik-
crisitem.author.orcid0000-0003-4467-478X-
crisitem.author.parentorgFakultät für Maschinenbau und Bauingenieurwesen-
Appears in Collections:Publications of the HSU Researchers
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

40
checked on Jul 5, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.