DC FieldValueLanguage
dc.contributor.authorWürger, Tim-
dc.contributor.authorHöche, Daniel-
dc.contributor.authorFeiler, Christian-
dc.contributor.authorMusil, Félix-
dc.contributor.authorFeldbauer, Gregor B. V.-
dc.contributor.authorLamaka, Sviatlana V.-
dc.contributor.authorZheludkevich, Mikhail L.-
dc.contributor.authorMeißner, Robert H.-
dc.date.accessioned2020-03-25T10:34:15Z-
dc.date.available2020-03-25T10:34:15Z-
dc.date.issued2019-
dc.identifier.citationEnthalten in: Frontiers in Materials. - Lausanne : Frontiers Media, 2014. - Online-Ressource. - Vol. 6.2019, Article number 53, insgesamt 6 Seitende_DE
dc.description.abstractMagnesium exhibits a high potential for a variety of applications in areas such as transport, energy and medicine. However, untreated magnesium alloys are prone to corrosion, restricting their practical application. Therefore, it is necessary to develop new approaches that can prevent or control corrosion and degradation processes in order to adapt to the specific needs of the application. One potential solution is using corrosion inhibitors which are capable of drastically reducing the degradation rate as a result of interactions with the metal surface or components of the corrosive medium. As the sheer number of potential dissolution modulators makes it impossible to obtain a detailed atomistic understanding of the inhibition mechanisms for each additive, other measures for inhibition prediction are required. For this purpose, a concept is presented that combines corrosion experiments, machine learning, data mining, density functional theory calculations and molecular dynamics to estimate corrosion inhibition properties of still untested molecules. Concomitantly, this approach will provide a deeper understanding of the fundamental mechanisms behind the prevention of corrosion events in magnesium-based materials and enables more accurate continuum corrosion simulations. The presented concept facilitates the search for molecules with a positive or negative effect on the inhibition efficiency and could thus significantly contribute to the better control of magnesium / electrolyte interface properties. 2019 Würger, Feiler, Musil, Feldbauer, Höche, Lamaka, Zheludkevich and Meißner.de_DE
dc.description.sponsorshipComputational Material Designde_DE
dc.language.isoende_DE
dc.publisherFrontiers Mediade_DE
dc.relation.ispartofFrontiers in Materialsde_DE
dc.subjectUniversitätsbibliographiede_DE
dc.subjectEvaluation 2019de_DE
dc.titleData science based mg corrosion engineeringde_DE
dc.typeArticlede_DE
dc.identifier.doi10.3389/fmats.2019.00053-
dc.identifier.doi10.15480/882.2265-
hsu.accessrights.dnbblockedde_DE
dc.contributor.affiliationTechnische Universität Hamburgde_DE
dc.contributor.affiliationTechnische Universität Hamburgde_DE
dc.contributor.affiliationTechnische Universität Hamburgde_DE
dc.contributor.affiliationTechnische Universität Hamburgde_DE
dcterms.bibliographicCitation.volume6de_DE
dcterms.bibliographicCitation.originalpublisherplaceLausannede_DE
dc.relation.pagesinsgesamt 6de_DE
dc.identifier.urlhttps://ub.hsu-hh.de/DB=1.8/XMLPRS=N/PPN?PPN=1669386376-
local.submission.typeonly-metadatade_DE
item.grantfulltextnone-
item.fulltext_sNo Fulltext-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-7719-6684-
Appears in Collections:2019
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

16
checked on Jul 4, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.