Please use this persistent identifier to cite or link to this item: doi:10.24405/524
Title: Modellierung und experimentelle Untersuchung der thermischen Abluftentfeuchtung multifunktionaler Brennstoffzellensysteme
Authors: Oehme, Felix 
Language: de
Subject (DDC): Ingenieurwissenschaften
Subject: Entfeuchtung
PEM
Dehumidification
Moist Air
Gas-Steam-Mixture
Fuel Cell System
Condensation
Gas-Dampf-Gemisch
Kondensation
Simscape
Issue Date: 2015
Publisher: Universitätsbibliothek der HSU/UniBwH
Document Type: Thesis
Publisher Place: Hamburg
Abstract: 
Das Ziel dieser Arbeit ist die Entwicklung einer integralen Methode zur Berechnung von Entfeuchtungsprozessen von feuchter Luft durch Kühlung sowie die Validierung mit Versuchsergebnissen. Die modellbasierte Entwicklung auf Basis der physikalischen Modellierung eines multifunktionalen Brennstoffzellensystems für Passagierflugzeuge erfordert eine solche Methode. Die Entfeuchtung der Brennstoffzellenabluft ist von besonderem Interesse, da diese sauerstoffabgereicherte Luft wenigWasser enthalten darf, damit sie zum einen zur Inertisierung der Brennstofftanks eingesetzt werden und zum anderen ein möglichst großer Anteil des kondensierten Wassers dem Wassersystem des Flugzeugs in flüssiger Form zugeführt werden kann. Mit einem Zellenmodell konnte das thermische Verhalten von Wärmeübertragern mit Kreuzgegen-stromführungen unter Berücksichtigung der Änderung der scheinbaren spezifischen Wärmekapazität der feuchten Luft aufgrund der Kondensation des Wasserdampfanteils mit bis zu vier Durchgängen des Kühlmittels analysiert werden. Diese Ergebnisse dienten der Erstellung von Korrelationen zur Berechnung eines Korrekturfaktors zur Bestimmung der mittleren logarithmischen Temperaturdifferenz unter Entfeuchtungsbedingungen. Zudem wurde ein Versuchsstand in Betrieb genommen, der die Konditionierung der Umgebungsluft hinsichtlich der Wasserbeladung, der Temperatur und des Drucks entsprechend der Abluft eines Brennstoffzellensystems ermöglicht. Diese feuchte Luft wurde einem Rohrrippenwärmeübertrager zugeführt, so dass durch Kühlung ein Teil des gasförmigen Wassers kondensiert, abgeschieden und gesammelt werden kann. Die Validierung mit unterschiedlichen Korrelationen und Parametereinstellungen für die erstellten Modelle erfolgte mit eigenen Versuchsergebnissen und mit Literaturdaten. Die Verwendung dieser Literaturdaten in Verbindung mit der aus ihnen entwickelten Wärmeübergangskorrelation führt erwartungsgemäß zu den geringsten mittleren Abweichungen von 5% des übertragenen Wärmestroms unter Entfeuchtungsbedingungen. Durch die Anwendung einer Korrelation, die für trockene Oberflächen vorgesehen ist, können die Messwerte im Mittel mit einer Abweichung von 17% wiedergeben werden. Diese Abweichung kann durch die Berücksichtigung einiger Effekte bei der Kondensatfilmbildung auf 10% verringert werden. Die Validierung mit eigenen Messwerten, die sich durch eine vergleichsweise hohe Wasserbeladung auszeichnen, erfordert die Verwendung von Korrelationen für benetzte Oberflächen und die Berücksichtigung der Kondensatfilmeffekte, um eine mittlere Abweichung von 10% zu erreichen. Ferner konnte eine automatisierte Auslegungsmethode für Rohrrippenwärmeübertrager entwickelt und in die Modellbildung implementiert werden. Dadurch wird eine automatisierte Auslegung, Bewertung und damit übergeordnete Optimierung von multifunktionalen Brennstoffzellensystemen ermöglicht.
Organization Units (connected with the publication): Thermodynamik 
DOI: https://doi.org/10.24405/524
URL: http://edoc.sub.uni-hamburg.de/hsu/volltexte/2015/3100/
Advisor: Kabelac, Stephan 
Referee: Joos, Franz
Grantor: HSU Hamburg
Type of thesis: Doctoral Thesis
Exam date: 2015-02-23
Appears in Collections:Publications of the HSU Researchers

Files in This Item:
File SizeFormat
dissertation_oehme.pdf1.87 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Google ScholarTM

Check


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.