Title: Ab initio virial equation of state for argon using a new nonadditive three-body potential
Authors: Jäger, Benjamin
Hellmann, Robert 
Bich, Eckard
Vogel, Eckhard
Language: eng
Issue Date: 28-Aug-2011
Document Type: Article
Journal / Series / Working Paper (HSU): The journal of chemical physics : JCP
Volume: 135
Issue: 8
Abstract: 
An ab initio nonadditive three-body potential for argon has been developed using quantum-chemical calculations at the CCSD(T) and CCSDT levels of theory. Applying this potential together with a recent ab initio pair potential from the literature, the third and fourth to seventh pressure virial coefficients of argon were computed by standard numerical integration and the Mayer-sampling Monte Carlo method, respectively, for a wide temperature range. All calculated virial coefficients were fitted separately as polynomials in temperature. The results for the third virial coefficient agree with values evaluated directly from experimental data and with those computed for other nonadditive three-body potentials. We also redetermined the second and third virial coefficients from the best experimental pρT data utilizing the computed higher virial coefficients as constraints. Thus, a significantly closer agreement of the calculated third virial coefficients with the experimental data was achieved. For different orders of the virial expansion, pρT data have been calculated and compared with results from high quality measurements in the gaseous and supercritical region. The theoretically predicted pressures are within the very small experimental errors of ±0.02% for p ≤ 12 MPa in the supercritical region near room temperature, whereas for subcritical temperatures the deviations increase up to +0.3%. The computed pressure at the critical density and temperature is about 1.3% below the experimental value. At pressures between 200 MPa and 1000 MPa and at 373 K, the calculated values deviate by 1% to 9% from the experimental results.
Organization Units (connected with the publication): Universität Rostock
ISSN: 00219606
Publisher DOI: 10.1063/1.3627151
Appears in Collections:Publications of the HSU Researchers (before HSU)

Show full item record

CORE Recommender

SCOPUSTM   
Citations

81
checked on Nov 30, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.