Title: Can an ab initio three-body virial equation describe the mercury gas phase?
Authors: Wiebke, J.
Wormit, M.
Hellmann, Robert 
Pahl, E.
Schwerdtfeger, P.
Language: eng
Issue Date: 27-Mar-2014
Document Type: Article
Journal / Series / Working Paper (HSU): The journal of physical chemistry. B
Volume: 118
Issue: 12
Page Start: 3392
Page End: 3400
Abstract: 
We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase.
Organization Units (connected with the publication): Universität Rostock
ISSN: 15206106
Publisher DOI: 10.1021/jp412260a
Appears in Collections:Publications of the HSU Researchers (before HSU)

Show full item record

CORE Recommender

SCOPUSTM   
Citations

2
checked on Feb 8, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.