Title: Calculation of the transport properties of a dilute gas consisting of Lennard-Jones chains
Authors: Hellmann, Robert 
Riesco, Nicolas
Vesovic, Velisa
Language: eng
Issue Date: 28-Feb-2013
Document Type: Article
Journal / Series / Working Paper (HSU): The journal of chemical physics : JCP
Volume: 138
Issue: 8
Abstract: 
The transport properties in the dilute gas limit have been calculated by the classical-trajectory method for a gas consisting of chain-like molecules. The molecules were modelled as rigid chains consisting of spherical segments that interact through a combination of site-site Lennard-Jones 12-6 potentials. Results are reported for shear viscosity, self-diffusion, and thermal conductivity for chains consisting of 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, and 16 segments in the reduced temperature range of 0.3-50. The results indicate that the transport properties increase with temperature and decrease with chain length. At high temperatures the dependence of the transport properties is governed effectively by the repulsive part of the potential. No simple scaling with chain length has been observed. The higher order correction factors are larger than observed for real molecules so far, reaching asymptotic values of 1.019-1.033 and 1.060-1.072 for viscosity and thermal conductivity, respectively. The dominant contribution comes from the angular momentum coupling. The agreement with molecular dynamics calculations for viscosity is within the estimated accuracy of the two methods for shorter chains. However, for longer chains differences of up to 7% are observed.
Organization Units (connected with the publication): Universität Rostock
ISSN: 1089-7690
0021-9606
Publisher DOI: 10.1063/1.4793221
Appears in Collections:6 - Publication references (without fulltext) of your publications before HSU

Show full item record

CORE Recommender

SCOPUSTM   
Citations

8
checked on Apr 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.