Title: Cross Second Virial Coefficients and Dilute Gas Transport Properties of the Systems (CO₂ + C₂H₆) and (H₂S + C₂H₆) from Accurate Intermolecular Potential Energy Surfaces
Authors: Hellmann, Robert 
Language: eng
Issue Date: 12-Mar-2020
Document Type: Article
Journal / Series / Working Paper (HSU): Journal of chemical & engineering data
Volume: 65
Issue: 3
Page Start: 968
Page End: 979
The cross second virial coefficients and dilute gas shear viscosities, thermal conductivities, and binary diffusion coefficients of the systems (CO₂ + C₂H₆) and (H₂S + C₂H₆) were determined with high accuracy at temperatures from (150 to 1200) K by means of statistical thermodynamics and the kinetic theory of polyatomic gases. The required intermolecular potential energy surfaces (PESs) for the CO₂-C₂H₆ and H₂S-C₂H₆ interactions are presented here, while the like-species interactions were modeled employing PESs developed previously as part of our studies on the pure gases. All PESs are based on high-level quantum-chemical ab initio computations and are represented analytically by site-site potential functions. The agreement between the calculated values for the investigated mixture properties and the few reliable experimental data is very satisfactory.
Organization Units (connected with the publication): Universität Rostock
ISSN: 00219568
Publisher DOI: 10.1021/acs.jced.9b00212
Appears in Collections:6 - Bibliographic Data - Publications of the HSU Researchers (before HSU)

Show full item record

CORE Recommender


checked on Mar 27, 2023

Google ScholarTM




Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.