DC FieldValueLanguage
dc.contributor.authorMorgan, Lucy-
dc.contributor.authorMercer, Michael-
dc.contributor.authorBhandari, Arihant-
dc.contributor.authorPeng, Chao-
dc.contributor.authorIslam, Mazharul M.-
dc.contributor.authorYang, Hui-
dc.contributor.authorHolland, Julian Oliver-
dc.contributor.authorColes, Samuel William-
dc.contributor.authorSharpe, Ryan-
dc.contributor.authorWalsh, Aron-
dc.contributor.authorMorgan, Benjamin J.-
dc.contributor.authorKramer, Denis-
dc.contributor.authorIslam, Saiful M.-
dc.contributor.authorHoster, Harry-
dc.contributor.authorEdge, Jacqueline Sophie-
dc.contributor.authorSkylaris, Chris-Kriton-
dc.date.accessioned2022-05-06T08:38:10Z-
dc.date.available2022-05-06T08:38:10Z-
dc.date.issued2021-12-07-
dc.identifier.issn2516-1083-
dc.description.abstractComputational modelling is a vital tool in the research of batteries and their component materials. Atomistic models are key to building truly physics-based models of batteries and form the foundation of the multiscale modelling chain, leading to more robust and predictive models. These models can be applied to fundamental research questions with high predictive accuracy. For example, they can be used to predict new behaviour not currently accessible by experiment, for reasons of cost, safety, or throughput. Atomistic models are useful for quantifying and evaluating trends in experimental data, explaining structure-property relationships, and informing materials design strategies and libraries. In this review, we showcase the most prominent atomistic modelling methods and their application to electrode materials, liquid and solid electrolyte materials, and their interfaces, highlighting the diverse range of battery properties that can be investigated. Furthermore, we link atomistic modelling to experimental data and higher scale models such as continuum and control models. We also provide a critical discussion on the outlook of these materials and the main challenges for future battery research.de_DE
dc.description.sponsorshipComputational Material Designde_DE
dc.language.isoende_DE
dc.publisherInstitute of Physics Publishing (IOP)de_DE
dc.relation.ispartofProgress in Energyde_DE
dc.subject.ddcDDC::500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemiede_DE
dc.titlePushing the boundaries of lithium battery research with atomistic modelling on dfferent scalesde_DE
dc.typeArticlede_DE
dc.identifier.doi10.1088/2516-1083/ac3894-
dcterms.bibliographicCitation.volume4de_DE
dcterms.bibliographicCitation.issue1de_DE
dcterms.bibliographicCitation.originalpublisherplaceBristolde_DE
dc.relation.pagesinsges. ca. 87 Seitende_DE
local.submission.typeonly-metadatade_DE
dc.description.peerReviewedYesde_DE
dc.type.articleScientific Articlede_DE
item.grantfulltextnone-
item.fulltext_sNo Fulltext-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptComputational Material Design-
crisitem.author.parentorgFakultät für Maschinenbau und Bauingenieurwesen-
Appears in Collections:Publications of the HSU Researchers
Show simple item record

CORE Recommender

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.