Please use this persistent identifier to cite or link to this item: doi:10.24405/14255
Title: Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change
Authors: Maess, Burkhard
Jacobsen, Thomas 
Schröger, Erich
Friederici, Angela D.
Green Open Access (secondary release): 
Language: eng
Keywords: Auditory sensory memory;Change detection;Equivalent current dipole;Magnetoencephalography (MEG);Mismatch negativity (MMN);Sound frequency
Subject (DDC): 100 Philosophie & Psychologie
Issue Date: 15-Aug-2007
Publisher: Academic Press
Document Type: Article
Journal / Series / Working Paper (HSU): NeuroImage
Volume: 37
Issue: 2
Page Start: 561
Page End: 571
Publisher Place: Orlando, FL
Changes in the pitch of repetitive sounds elicit the mismatch negativity (MMN) of the event-related brain potential (ERP). There exist two alternative accounts for this index of automatic change detection: (1) A sensorial, non-comparator account according to which ERPs in oddball sequences are affected by differential refractory states of frequency-specific afferent cortical neurons. (2) A cognitive, comparator account stating that MMN reflects the outcome of a memory comparison between a neuronal model of the frequently presented standard sound with the sensory memory representation of the changed sound. Using a condition controlling for refractoriness effects, the two contributions to MMN can be disentangled. The present study used whole-head MEG to further elucidate the sensorial and cognitive contributions to frequency MMN. Results replicated ERP findings that MMN to pitch change is a compound of the activity of a sensorial, non-comparator mechanism and a cognitive, comparator mechanism which could be separated in time. The sensorial part of frequency MMN consisting of spatially dipolar patterns was maximal in the late N1 range (105-125 ms), while the cognitive part peaked in the late MMN-range (170-200 ms). Spatial principal component analyses revealed that the early part of the traditionally measured MMN (deviant minus standard) is mainly due to the sensorial mechanism while the later mainly due to the cognitive mechanism. Inverse modeling revealed sources for both MMN contributions in the gyrus temporales transversus, bilaterally. These MEG results suggest temporally distinct but spatially overlapping activities of non-comparator-based and comparator-based mechanisms of automatic frequency change detection in auditory cortex.
Organization Units (connected with the publication): Insitut für Psychologie, Universität Leipzig
ISSN: 1053-8119
Publisher DOI: 10.1016/j.neuroimage.2007.05.040
Appears in Collections:5 - Open Access Publications of the HSU Researchers (before HSU)

Files in This Item:
File Description SizeFormat
openHSU_14255.pdf1.77 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Mar 26, 2023

Google ScholarTM




Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.