DC FieldValueLanguage
dc.contributor.authorDong, Junliang-
dc.contributor.authorTomasino, Alessandro-
dc.contributor.authorBalistreri, Giacomo-
dc.contributor.authorYou, Pei-
dc.contributor.authorVorobiov, Anton-
dc.contributor.authorCharette, Étienne-
dc.contributor.authorLe Drogoff, Boris-
dc.contributor.authorChaker, Mohamed-
dc.contributor.authorYurtsever, Aycan-
dc.contributor.authorStivala, Salvatore-
dc.contributor.authorVincenti, Maria A-
dc.contributor.authorDe Angelis, Costantino-
dc.contributor.authorKip, Detlef-
dc.contributor.authorAzaña, José-
dc.contributor.authorMorandotti, Roberto-
dc.date.accessioned2022-02-24T07:47:09Z-
dc.date.available2022-02-24T07:47:09Z-
dc.date.issued2022-02-08-
dc.identifier.issn2041-1723-
dc.identifier.issn2041-1723-
dc.description.abstractWaveguides play a pivotal role in the full deployment of terahertz communication systems. Besides signal transporting, innovative terahertz waveguides are required to provide versatile signal-processing functionalities. Despite fundamental components, such as Bragg gratings, have been recently realized, they typically rely on complex hybridization, in turn making it extremely challenging to go beyond the most elementary functions. Here, we propose a universal approach, in which multiscale-structured Bragg gratings can be directly etched on metal-wires. Such an approach, in combination with diverse waveguide designs, allows for the realization of a unique platform with remarkable structural simplicity, yet featuring unprecedented signal-processing capabilities. As an example, we introduce a four-wire waveguide geometry, amenable to support the low-loss and low-dispersion propagation of polarization-division multiplexed terahertz signals. Furthermore, by engraving on the wires judiciously designed Bragg gratings based on multiscale structures, it is possible to independently manipulate two polarization-division multiplexed terahertz signals. This platform opens up new exciting perspectives for exploiting the polarization degree of freedom and ultimately boosting the capacity and spectral efficiency of future terahertz networks.-
dc.description.sponsorshipExperimentalphysik und Materialwissenschaften-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.ispartofNature Communications-
dc.titleVersatile metal-wire waveguides for broadband terahertz signal processing and multiplexing-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-022-27993-7-
dc.identifier.pmid35136043-
dcterms.bibliographicCitation.volume13-
dcterms.bibliographicCitation.originalpublisherplace[London]-
local.submission.typeonly-metadata-
dc.type.articleScientific Article-
hsu.peerReviewed-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltext_sNo Fulltext-
item.fulltextNo Fulltext-
crisitem.author.deptExperimentalphysik und Materialwissenschaften-
crisitem.author.orcid0000-0001-7923-0113-
crisitem.author.parentorgFakultät für Elektrotechnik-
Appears in Collections:3 - Publication references (without fulltext)
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

31
checked on Apr 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.