Title: Extended Synthetic Turbulence Inflow Generator within a Hybrid LES-URANS Methodology for the Prediction of Non-Equilibrium Wall-Bounded Flows
Authors: Schmidt, Stephan 
Breuer, Michael  
Language: en
Keywords: Universitätsbibliographie;Evaluation 2015
Subject (DDC): DDC - Dewey Decimal Classification::000 Informatik, Wissen, Systeme
DDC - Dewey Decimal Classification::500 Naturwissenschaften
DDC - Dewey Decimal Classification::600 Technik
Issue Date: 2015
Publisher: Springer Science + Business Media B.V.
Document Type: Article
Source: In: Flow, turbulence and combustion / Europäische Kommission / European Research Community on Flow, Turbulence and Combustion. - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947- ; ZDB-ID: 1492282-4 . - Bd. 95.2015, 4, Seite 669-707
Journal / Series / Working Paper (HSU): Flow, turbulence and combustion : an international journal published in association with ERCOFTAC 
Volume: 95
Issue: 4
Page Start: 669
Page End: 707
Publisher Place: Dordrecht [u.a.]
Abstract: 
© 2015 Springer Science+Business Media Dordrecht. The objective of the present paper is the fusion of a proper synthetic turbulence inflow generator with an unified hybrid LES-URANS method. The hybrid approach relies on an explicit algebraic Reynolds stress model within the unsteady Reynolds-averaged Navier-Stoks (URANS) mode. To extend the application area of the hybrid method, the digital filter concept by Klein et al. (J. Comp. Phys. 186, 652-665, 2003) is employed. Due to the application of the inflow generator within the hybrid simulation, an additional formulation for the modeled turbulent kinetic energy is necessary to ensure a reasonable inflow profile for this quantity. The required integral time scale and the two integral length scales are presently determined based on pre-simulations applying periodic boundary conditions but can also rely on other sources such as experimental data. With the aid of these integral scales and reference profiles of the mean velocity and the Reynolds stress tensor instantaneous inflow velocity profiles are generated. The integral scales are evaluated for the plane channel flow (Re t = 590) as well as the periodic hill flow (Re b = 10,595). The generated inflow data are used for these test cases and extensively evaluated. Besides the analysis of the adaptation length for both benchmarks, the mean profiles of the velocity as well as selected second-order moments of the simulations applying the synthetic inflow profiles are compared with reference data and results of hybrid simulations applying periodic boundary conditions. Furthermore, the influence of the grid resolution is analyzed.
Organization Units (connected with the publication): Strömungsmechanik 
URL: https://ub.hsu-hh.de/DB=1.8/XMLPRS=N/PPN?PPN=839825641
ISSN: 13866184
DOI: 10.1007/s10494-015-9639-8
Appears in Collections:2015

Show full item record

CORE Recommender

SCOPUSTM   
Citations

14
checked on May 20, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in openHSU are protected by copyright, with all rights reserved, unless otherwise indicated.