Publication:
HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values

cris.customurl 14377
cris.virtual.department High Performance Computing
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department High Performance Computing
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtualsource.department 96eeb7e3-b287-4320-836e-6f62697f2214
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 25ba2e6f-9989-47a4-aa6b-0908992396e8
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Voß, Hannah
dc.contributor.author Schlumbohm, Simon
dc.contributor.author Barwikowski, Philip
dc.contributor.author Wurlitzer, Marcus
dc.contributor.author Dottermusch, Matthias
dc.contributor.author Neumann, Philipp
dc.contributor.author Schlüter, Hartmut
dc.contributor.author Neumann, Julia E.
dc.contributor.author Krisp, Christoph
dc.date.issued 2022-06-20
dc.description.abstract Dataset integration is common practice to overcome limitations in statistically underpowered omics datasets. Proteome datasets display high technical variability and frequent missing values. Sophisticated strategies for batch effect reduction are lacking or rely on error-prone data imputation. Here we introduce HarmonizR, a data harmonization tool with appropriate missing value handling. The method exploits the structure of available data and matrix dissection for minimal data loss, without data imputation. This strategy implements two common batch effect reduction methods-ComBat and limma (removeBatchEffect()). The HarmonizR strategy, evaluated on four exemplarily analyzed datasets with up to 23 batches, demonstrated successful data harmonization for different tissue preservation techniques, LC-MS/MS instrumentation setups, and quantification approaches. Compared to data imputation methods, HarmonizR was more efficient and performed superior regarding the detection of significant proteins. HarmonizR is an efficient tool for missing data tolerant experimental variance reduction and is easily adjustable for individual dataset properties and user preferences.
dc.description.version NA
dc.identifier.doi 10.1038/s41467-022-31007-x
dc.identifier.issn 2041-1723
dc.identifier.issn 2041-1723
dc.identifier.pmid 35725563
dc.identifier.scopus 2-s2.0-85132208409
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/14377
dc.language.iso en
dc.relation.journal Nature Communications
dc.relation.orgunit High Performance Computing
dc.relation.orgunit Projekt DEAL
dc.rights.accessRights metadata only access
dc.title HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values
dc.type Research article
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.volume 13
Files