openHSU logo
  • English
  • Deutsch
  • Log In
  • Communities & Collections
  1. Home
  2. Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg
  3. Publications
  4. 3 - Publication references (without full text)
  5. Eighth-Order Virial Equation of State for Methane from Accurate Two-Body and Nonadditive Three-Body Intermolecular Potentials
 
Options
Show all metadata fields

Eighth-Order Virial Equation of State for Methane from Accurate Two-Body and Nonadditive Three-Body Intermolecular Potentials

Publication date
2022-06-02
Document type
Research article
Author
Hellmann, Robert 
Organisational unit
Thermodynamik 
DOI
10.1021/acs.jpcb.2c01830
URI
https://openhsu.ub.hsu-hh.de/handle/10.24405/14447
Scopus ID
2-s2.0-85131268629
Pubmed ID
35584052
ISSN
1520-5207
1520-6106
Series or journal
The journal of physical chemistry B
Periodical volume
126
Periodical issue
21
First page
3920
Last page
3930
Peer-reviewed
✅
Part of the university bibliography
✅
  • Additional Information
Abstract
The second to eighth virial coefficients of methane were determined for temperatures up to 1200 K using an existing ab initio-based and empirically fine-tuned two-body potential combined with a new empirical nonadditive three-body potential. Nuclear quantum effects were accounted for by the semiclassical Feynman-Hibbs approach. The numerical evaluation of the high-dimensional integrals through which the virial coefficients are expressed was performed employing the Mayer-sampling Monte Carlo technique. By fitting suitable mathematical functions to the calculated virial coefficients, an analytical eighth-order virial equation of state (VEOS8) was obtained. Pressures p computed as a function of temperature T and density ρ using VEOS8 agree highly satisfactorily with p(ρ, T) values obtained with the experimentally based reference equation of state for methane of Setzmann and Wagner (SWEOS) at state points at which VEOS8 is sufficiently converged. It is shown that it is essential to account for nonadditive three-body interactions in the calculations in order to achieve good agreement with the SWEOS.
Version
Not applicable (or unknown)
Access right on openHSU
Metadata only access

  • Cookie settings
  • Privacy policy
  • Send Feedback
  • Imprint