Publication:
Improved Domain Modeling for Realistic Automated Planning and Scheduling in Discrete Manufacturing

cris.customurl 14928
cris.virtual.department Automatisierungstechnik
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Automatisierungstechnik
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Automatisierungstechnik
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Automatisierungstechnik
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Automatisierungstechnik
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtualsource.department d27eae86-6d38-489c-b4c3-2eed27fb81cc
cris.virtualsource.department f318ef77-db4b-4956-9a01-97eee1ab0454
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Rogalla, Antje
dc.contributor.author Fay, Alexander
dc.contributor.author Niggemann, Oliver
dc.date.issued 2018-10-22
dc.description.abstract Current production planning and scheduling systems in automation do not meet the requirements of modern individualized production. Today's, static production processes impede customized manufacturing and small-scale production. A new way of thinking towards a dynamic control is required. This paper focuses on automated integrated process planning and scheduling on control level in discrete manufacturing. Existing algorithms in artificial intelligence planning are applied to solve process planning and scheduling problems. The challenge is to model the manufacturing system and products in a way that automated planners can generate efficiently process plans and schedules. Hence, based on a general classification of operations, different modeling options with regard to a successful automated process planning and scheduling are discussed. As a result, a domain modeling approach for discrete manufacturing is presented.
dc.description.version NA
dc.identifier.doi 10.1109/ETFA.2018.8502631
dc.identifier.isbn 9781538671085
dc.identifier.issn 1946-0740
dc.identifier.issn 1946-0759
dc.identifier.scopus 2-s2.0-85057238824
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/14928
dc.language.iso en
dc.publisher IEEE
dc.relation.conference IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), 04-07 September 2018, Turin, Italy
dc.relation.orgunit Automatisierungstechnik
dc.rights.accessRights metadata only access
dc.title Improved Domain Modeling for Realistic Automated Planning and Scheduling in Discrete Manufacturing
dc.type Conference paper
dcterms.bibliographicCitation.booktitle 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)
dcterms.bibliographicCitation.originalpublisherplace Piscataway
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 471
oaire.citation.startPage 464
Files