Publication:
Can an ab initio three-body virial equation describe the mercury gas phase?

cris.customurl 14493
cris.virtual.department Thermodynamik
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 96d8e6e1-6361-46c5-ae2c-a84605aadf12
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Wiebke, J.
dc.contributor.author Wormit, M.
dc.contributor.author Hellmann, Robert
dc.contributor.author Pahl, E.
dc.contributor.author Schwerdtfeger, P.
dc.date.issued 2014-03-27
dc.description.abstract We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase.
dc.description.version NA
dc.identifier.doi 10.1021/jp412260a
dc.identifier.issn 1520-5207
dc.identifier.issn 1520-6106
dc.identifier.pmid 24547987
dc.identifier.scopus 2-s2.0-84897130265
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/14493
dc.language.iso en
dc.relation.journal The journal of physical chemistry. B
dc.relation.orgunit Universität Rostock
dc.rights.accessRights metadata only access
dc.title Can an ab initio three-body virial equation describe the mercury gas phase?
dc.type Research article
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography Nein
oaire.citation.endPage 3400
oaire.citation.issue 12
oaire.citation.startPage 3392
oaire.citation.volume 118
Files