Publication:
Experimental PIV/V3V measurements of vortex-induced fluid-structure interaction in turbulent flow-A new benchmark FSI-PfS-2a

cris.customurl 8919
cris.virtual.department Strömungsmechanik
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtualsource.department ba61e71a-d073-4609-89b6-c10b460b09a8
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Kalmbach, Andreas
dc.contributor.author Breuer, Michael
dc.date.issued 2013-10
dc.description.abstract The investigation of the bidirectional coupling between a fluid flow and a structure motion is a growing branch of research in science and industry. Applications of the so-called fluid-structure interactions (FSI) are widespread. To improve coupled numerical FSI simulations, generic experimental benchmark studies of the fluid and the structure are necessary. In this work, the coupling of a vortex-induced periodic deformation of a flexible structure mounted behind a rigid cylinder and a fully turbulent water flow performed at a Reynolds number of Re=30. 470 is experimentally investigated with a planar particle image velocimetry (PIV) and a volumetric three-component velocimetry (V3V) system. To determine the structure displacements a multiple-point laser triangulation sensor is used. The three-dimensional fluid velocity results show shedding vortices behind the structure, which reaches the second swiveling mode with a frequency of about 11.2. Hz corresponding to a Strouhal number of St=0.177. Providing phase-averaged flow and structure measurements precise experimental data for coupled computational fluid dynamics (CFD) and computational structure dynamics (CSD) validations are available for this new benchmark case denoted FSI-PfS-2a. The test case possesses four main advantages: (i) the geometry is rather simple; (ii) kinematically, the rotation of the front cylinder is avoided; (iii) the boundary conditions are well defined; (iv) nevertheless, the resulting flow features and structure displacements are challenging from the computational point of view. In addition to the flow field and displacement data a PIV-based force calculation method is used to estimate the lift and drag coefficients of the moving structure. © 2013 Elsevier Ltd.
dc.description.version NA
dc.identifier.citation In: Journal of fluids and structures. - London : Acad. Press, 1987- ; ZDB-ID: 56997-5 . - Bd. 42.2013, 1, Seite 369-387
dc.identifier.doi 10.1016/j.jfluidstructs.2013.07.004
dc.identifier.issn 0889-9746
dc.identifier.scopus 2-s2.0-84885323499
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/8919
dc.language.iso en
dc.publisher Academic Press
dc.relation.journal Journal of Fluids and Structures
dc.relation.orgunit Strömungsmechanik
dc.rights.accessRights metadata only access
dc.title Experimental PIV/V3V measurements of vortex-induced fluid-structure interaction in turbulent flow-A new benchmark FSI-PfS-2a
dc.type Research article
dcterms.bibliographicCitation.originalpublisherplace London
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 387
oaire.citation.issue 1
oaire.citation.startPage 369
oaire.citation.volume 42
Files