Publication:
Nonlinear stochastic estimation of wall models for LES

cris.customurl 8906
cris.virtual.department Strömungsmechanik
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department ba61e71a-d073-4609-89b6-c10b460b09a8
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Abel, Markus
dc.contributor.author Stojković, Dragan
dc.contributor.author Breuer, Michael
dc.date.issued 2006
dc.description.abstract A key technology for large eddy simulation (LES) of complex flows is an appropriate wall modeling strategy. In this paper we apply for the first time a fully nonparametric procedure for the estimation of generalized additive models (GAM) by conditional statistics. As a database, we use DNS and wall-resolved LES data of plane channel flow for Reynolds numbers, Re and 10,935, 22,776 (LES). The statistical method applied is a quantitative tool for the identification of important model terms, allowing for an identification of some of the near-wall physics. The results are given as nonparametric functions which cannot be attained by other methods. We investigated a generalized model which includes Schumann's and Piomelli et al.'s model. A strong influence of the pressure gradient in the viscous sublayer is found; for larger wall distances the spanwise pressure gradient even dominates the τw,zy component. The first a posteriori LES results are given. © 2005 Elsevier Inc. All rights reserved.
dc.description.version NA
dc.identifier.doi 10.1016/j.ijheatfluidflow.2005.10.011
dc.identifier.issn 0142-727X
dc.identifier.scopus 2-s2.0-32944465560
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/8906
dc.language.iso en
dc.publisher Elsevier
dc.relation.journal International Journal of Heat and Fluid Flow
dc.relation.orgunit Universität Erlangen-Nürnberg
dc.rights.accessRights metadata only access
dc.title Nonlinear stochastic estimation of wall models for LES
dc.type Research article
dcterms.bibliographicCitation.originalpublisherplace Amsterdam
dspace.entity.type Publication
hsu.uniBibliography Nein
oaire.citation.endPage 278
oaire.citation.issue 2
oaire.citation.startPage 267
oaire.citation.volume 27
Files