Publication:
VQuAnDa: Verbalization QUestion ANswering DAtaset

cris.customurl 15235
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Data Engineering
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 3a2553bc-4d23-4bae-a22f-5d92c868792c
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Kacupaj, Endri
dc.contributor.author Zafar, Hamid
dc.contributor.author Lehmann, Jens
dc.contributor.author Maleshkova, Maria
dc.date.issued 2020-05-27
dc.description.abstract Question Answering (QA) systems over Knowledge Graphs (KGs) aim to provide a concise answer to a given natural language question. Despite the significant evolution of QA methods over the past years, there are still some core lines of work, which are lagging behind. This is especially true for methods and datasets that support the verbalization of answers in natural language. Specifically, to the best of our knowledge, none of the existing Question Answering datasets provide any verbalization data for the question-query pairs. Hence, we aim to fill this gap by providing the first QA dataset VQuAnDa that includes the verbalization of each answer. We base VQuAnDa on a commonly used large-scale QA dataset – LC-QuAD, in order to support compatibility and continuity of previous work. We complement the dataset with baseline scores for measuring future training and evaluation work, by using a set of standard sequence to sequence models and sharing the results of the experiments. This resource empowers researchers to train and evaluate a variety of models to generate answer verbalizations.
dc.description.version NA
dc.identifier.doi 10.1007/978-3-030-49461-2_31
dc.identifier.eissn 1611-3349
dc.identifier.isbn 9783030494605
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-85086138779
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/15235
dc.language.iso en
dc.publisher Springer
dc.relation.journal Lecture Notes in Computer Science
dc.relation.orgunit Universität Bonn
dc.rights.accessRights metadata only access
dc.subject Dataset
dc.subject Knowledge Graph
dc.subject Question Answering
dc.subject Verbalization
dc.title VQuAnDa: Verbalization QUestion ANswering DAtaset
dc.type Conference paper
dcterms.bibliographicCitation.booktitle The Semantic Web : 17th International Conference, ESWC 2020
dcterms.bibliographicCitation.originalpublisherplace Berlin
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography Nein
oaire.citation.endPage 547
oaire.citation.startPage 531
oaire.citation.volume 12123
Files