Publication:
Anfangswerte für einen späteren Schwarzes-Loch-Kollaps von kugelsymmetrischen relativistischen Flüssigkeiten - Existenzsätze und Numerik

cris.customurl 587
dc.contributor.advisor Seifert, Hans-Jürgen
dc.contributor.author Alfes, Ulrich
dc.contributor.grantor Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
dc.contributor.referee Müller zum Hagen, Henning
dc.date.issued 2002
dc.description.abstract Initial boundary value problems for quasilinear, partial differential equations of first order $\partial_t u+{\bf A}(u)\cdot \partial_x u={\bf b}(u)$ in two unknowns of hyperbolic type are considered. An astrophysically interesting and challenging (1) example hereof is a spherically symmetric perfect fluid space time, whose later collapse can be achieved by suitable choice of inital values. By that a timely global statement 'occurence of an event horizon from innocuous initial data' is won from a timely local existence theorem. The initial data must hold physical conditions which prevent a smooth solution in the star boundary (2). The proof stays clearly arranged since the system is brought into diagonal form. The diagonalisation method is used on the one hand, on the above mentioned Einstein equations and on the other hand, on the equations of one-dimensional gas dynamics (written in comoving and after transformation also in Eulerian coordinates) A new hybride algorithm is numerically testet for a single equation with creasing inital data. footnotes (1) Apart from the non-linearity of the equations system, which is not given in divergent form, the coordinates are concatenated with the underlying geometry, where the components of the metric are unknowns of the partial differential system. (2) where a vacuum space time is connected and the mass energy is positive (surface of a fluid) (3) new in that method is that it works also if the matrix ${\bf A$ is not invertible, because some eigenvalues disappear identically, provided that the system is written in such a way that one found so called constraints for all trivially propagated unknowns
dc.description.version NA
dc.identifier.doi 10.24405/587
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/587
dc.identifier.urn urn:nbn:de:gbv:705-opus-949
dc.language.iso de
dc.publisher Universitätsbibliothek der HSU/UniBw H
dc.relation.orgunit Fakultät für Maschinenbau und Bauingenieurwesen
dc.rights.accessRights restricted access
dc.subject Diagonalisierungsverfahren
dc.subject Existenzbeweis
dc.subject Hyperbolic
dc.subject Method of Diagonalization
dc.subject Quasilinear
dc.subject Proof of Existence
dc.subject.ddc 500 Naturwissenschaften de_DE
dc.title Anfangswerte für einen späteren Schwarzes-Loch-Kollaps von kugelsymmetrischen relativistischen Flüssigkeiten - Existenzsätze und Numerik
dc.title.alternative Initial values for a later black hole collaps of spherically relativistic fluids - existence theorems and numeric
dc.type PhD thesis (dissertation)
dcterms.dateAccepted 2002-06-03
dspace.entity.type Publication
hsu.thesis.grantorplace Hamburg
hsu.uniBibliography
Files
Collections