Publication: Evaluating Approximate Point Forecasting of Count Processes
cris.customurl | 5573 | |
cris.virtual.department | Quantitative Methoden der Wirtschaftswissenschaften | |
cris.virtual.department | Angewandte Stochastik und Risikomanagement | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Quantitative Methoden der Wirtschaftswissenschaften | |
cris.virtual.departmentbrowse | Angewandte Stochastik und Risikomanagement | |
cris.virtual.departmentbrowse | Quantitative Methoden der Wirtschaftswissenschaften | |
cris.virtual.departmentbrowse | Angewandte Stochastik und Risikomanagement | |
cris.virtual.departmentbrowse | Quantitative Methoden der Wirtschaftswissenschaften | |
cris.virtual.departmentbrowse | Angewandte Stochastik und Risikomanagement | |
cris.virtualsource.department | 5cc773d2-af25-4efe-91fa-7c012213771e | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | a9d49f91-9465-4fcd-b19d-7b230d9cf851 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Homburg, Annika | |
dc.contributor.author | Weiß, Christian H. | |
dc.contributor.author | Alwan, Layth C. | |
dc.contributor.author | Frahm, Gabriel | |
dc.contributor.author | Göb, Rainer | |
dc.date.issued | 2019 | |
dc.description.abstract | In forecasting count processes, practitioners often ignore the discreteness of counts and compute forecasts based on Gaussian approximations instead. For both central and non-central point forecasts, and for various types of count processes, the performance of such approximate point forecasts is analyzed. The considered data-generating processes include different autoregressive schemes with varying model orders, count models with overdispersion or zero inflation, counts with a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast approximations should be avoided. | |
dc.description.version | NA | |
dc.identifier.citation | Enthalten in: Econometrics. - Basel : MDPI, 2013. - Online-Ressource. - Bd. 7.2019, 3/30, insges. 28 S. | |
dc.identifier.doi | 10.3390/econometrics7030030 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/5573 | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.relation.journal | Econometrics | |
dc.relation.orgunit | Quantitative Methoden der Wirtschaftswissenschaften | |
dc.relation.orgunit | Angewandte Stochastik und Risikomanagement | |
dc.rights.accessRights | metadata only access | |
dc.title | Evaluating Approximate Point Forecasting of Count Processes | |
dc.type | Research article | |
dcterms.bibliographicCitation.originalpublisherplace | Basel | |
dspace.entity.type | Publication | |
hsu.peerReviewed | ✅ | |
hsu.uniBibliography | ✅ | |
oaire.citation.issue | 3/30 | |
oaire.citation.volume | 7 |