Publication:
Evaluating Approximate Point Forecasting of Count Processes

cris.customurl 5573
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department Angewandte Stochastik und Risikomanagement
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Angewandte Stochastik und Risikomanagement
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Angewandte Stochastik und Risikomanagement
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Angewandte Stochastik und Risikomanagement
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department a9d49f91-9465-4fcd-b19d-7b230d9cf851
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Homburg, Annika
dc.contributor.author Weiß, Christian H.
dc.contributor.author Alwan, Layth C.
dc.contributor.author Frahm, Gabriel
dc.contributor.author Göb, Rainer
dc.date.issued 2019
dc.description.abstract In forecasting count processes, practitioners often ignore the discreteness of counts and compute forecasts based on Gaussian approximations instead. For both central and non-central point forecasts, and for various types of count processes, the performance of such approximate point forecasts is analyzed. The considered data-generating processes include different autoregressive schemes with varying model orders, count models with overdispersion or zero inflation, counts with a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast approximations should be avoided.
dc.description.version NA
dc.identifier.citation Enthalten in: Econometrics. - Basel : MDPI, 2013. - Online-Ressource. - Bd. 7.2019, 3/30, insges. 28 S.
dc.identifier.doi 10.3390/econometrics7030030
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/5573
dc.language.iso en
dc.publisher MDPI
dc.relation.journal Econometrics
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.relation.orgunit Angewandte Stochastik und Risikomanagement
dc.rights.accessRights metadata only access
dc.title Evaluating Approximate Point Forecasting of Count Processes
dc.type Research article
dcterms.bibliographicCitation.originalpublisherplace Basel
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 3/30
oaire.citation.volume 7
Files