Publication:
Resolving anomalies in the critical exponents of FePt using finite-size scaling in magnetic fields

cris.customurl14281
cris.virtual.departmentComputational Material Design
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowseComputational Material Design
cris.virtual.departmentbrowseComputational Material Design
cris.virtual.departmentbrowseComputational Material Design
cris.virtualsource.department67c46f9c-f28e-4993-a60e-5d083a4fb05c
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorWaters, Jonathon Michael
dc.contributor.authorKramer, Denis
dc.contributor.authorSluckin, T.J.
dc.contributor.authorHovorka, Ondrej
dc.date.issued2019
dc.description.abstractFePt is the primary material being considered for the development of information storage technologies based on heat-assisted magnetic recording (HAMR). A practical realization of HAMR requires understanding the high-temperature phase transition behavior of FePt, including critical exponents and Curie temperature distributions as the fundamental HAMR media design characteristics. The studies so far found a significant degree of variability in the values of critical exponents of FePt and remain controversial. Here, we show that at the heart of this variability is the phase transition crossover phenomenon induced by two-ion anisotropy of FePt. Through Monte Carlo simulations based on a realistic FePt effective Hamiltonian, we demonstrate that in order to identify the critical exponents accurately, it is necessary to base the analysis on field-dependent magnetization data. We have developed a two-variable finite-size scaling method that accounts for the field effect. Through the use of this method, we show unambiguously that true critical exponents of FePt are fully consistent with the three-dimensional Heisenberg universality class.
dc.description.versionNA
dc.identifier.doi10.1103/PhysRevApplied.11.024028
dc.identifier.issn2331-7019
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/14281
dc.language.isoen
dc.publisherAmerican Physical Society
dc.relation.journalPhysical Review Applied
dc.relation.orgunitEngineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
dc.rights.accessRightsmetadata only access
dc.subjectHAMR
dc.subjectFinite-size scaling
dc.subjectCritical Exponents
dc.titleResolving anomalies in the critical exponents of FePt using finite-size scaling in magnetic fields
dc.typeResearch article
dcterms.bibliographicCitation.originalpublisherplaceCollege Park, Md. [u.a.]
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliographyNein
oaire.citation.issue2
oaire.citation.volume11
Files