Publication:
Neural Network Models of Cognitive Conflict Paradigms

cris.customurl 386
cris.virtual.department Allgemeine und Biologische Psychologie
cris.virtual.departmentbrowse Allgemeine und Biologische Psychologie
cris.virtual.departmentbrowse Allgemeine und Biologische Psychologie
cris.virtual.departmentbrowse Allgemeine und Biologische Psychologie
cris.virtual.departmentbrowse Allgemeine und Biologische Psychologie
cris.virtualsource.department 3f4c62ec-76b9-4055-905f-42413b841b23
dc.contributor.advisor Kluwe, Rainer H.
dc.contributor.author Luna-Rodriguez, Aquiles
dc.contributor.grantor Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
dc.date.issued 2009
dc.description Der Zugriff auf das dazugehörige ZIP-Archiv ist nur auf Anfrage möglich.
dc.description.abstract In recent years, some areas of cognitive psychology have proposed formal models in the form of computer simulations, using Back-Propagation Artificial Neural Networks (BP-ANNs). Such models represent an improvement in plausibility, and they allow quantitative results to be compared with empirical data.--- After learning, BP-ANN's cells exhibit a fixed input/output behavior. Using the black box method, this is shown to be a fundamental problem. Cells without an internal state to represent short-time memory cannot account for the sequence of stimuli, nor for the time elapsed between stimuli. As a consequence, BP-ANNs -as well as other neural networks without state-dependant input/output- are inadequate as models of some important cognitive processes. These include classical conditioning, operant conditioning, and sequence effects in cognitive control.--- Another major methodological problem is the use of free parameters. BP-ANNs cognitive models frequently use arbitrary amounts of cells, amounts of layers, connection structure, learning parameter value and other characteristics, without giving a theoretical justification.--- Three methods are proposed here to solve these problems: first, the black box method is used to produce a cell's input/output behavior more similar to that of neurons. Second, the reverse engineering method is used to simulate as many neural features as possible. And, third, a genetic algorithm is used to eliminate arbitrary free parameters.--- The use of these methods is illustrated through a series of spiking neural network models, implementing state-dependant input/output, spikes, refractory period, temporal summation, axon delay and synchronization of neuron groups. A genetic algorithm is used to choose the parameter values in another series of models.--- Finally, the feasibility of following this research strategy using parallel computer hardware is discussed.
dc.description.version NA
dc.format application/pdf
dc.identifier.doi 10.24405/386
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/386
dc.identifier.urn urn:nbn:de:gbv:705-opus-21379
dc.language.iso en
dc.publisher Universitätsbibliothek der HSU/UniBw H
dc.relation.orgunit Allgemeine und Biologische Psychologie
dc.rights.accessRights open access
dc.subject Cellular Automate
dc.subject Spiking Neural Network
dc.subject Jellyfish Simulation
dc.subject.ddc 150 Psychologie de_DE
dc.title Neural Network Models of Cognitive Conflict Paradigms
dc.type PhD thesis (dissertation)
dcterms.bibliographicCitation.originalpublisherplace Hamburg
dcterms.dateAccepted 2009-02-23
dspace.entity.type Publication
hsu.thesis.grantorplace Hamburg
hsu.uniBibliography
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
openHSU_386_1.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
openHSU_386_2.zip
Size:
3.22 MB
Format:
Unknown data format
Description:
Der Zugriff auf das ZIP-Archiv ist nur auf Anfrage möglich.
Collections