Publication:
Calculation of thermodynamic properties using path integral Monte Carlo simulations in the canonical ensemble

cris.customurl 21232
cris.virtual.department Thermodynamik
cris.virtual.department Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtual.departmentbrowse Thermodynamik
cris.virtualsource.department 9a2ccc07-0252-485b-9355-4fa908f793a3
cris.virtualsource.department f52145ee-13bc-4c6e-b5fd-d59dcd5c9ec1
dc.contributor.author Marienhagen, Philipp
dc.contributor.author Meier, Karsten
dc.date.issued 2025-08-21
dc.description All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract The method of Lustig [J. Chem. Phys. 100, 3048–3059 (1994)] is applied to the path integral formulation of the quantum-mechanical canonical ensemble to derive equations for the calculation of all common thermodynamic properties in a rigorous and systematic way. Using these equations, thermodynamic properties such as the pressure, the isochoric and isobaric heat capacity, the speed of sound, or the Joule–Thomson coefficient can be calculated in path integral Monte Carlo simulations, fully incorporating quantum effects without uncontrolled approximations. The equations are derived for primitive and virial estimators. For the virial estimators, we generalize the finite-difference approach of Yamamoto [J. Chem. Phys. 123, 104101 (2005)] to arbitrary thermodynamic properties. We verify the derived equations by Monte Carlo simulations of supercritical helium-4 above the vapor–liquid critical point at selected state points on the 80 K isotherm using recent, highly accurate ab initio pair and nonadditive three-body potentials. The results of these simulations agree with our previous simulation results in the isobaric-isothermal ensemble, a virial equation of state of metrological quality, and the most accurate experimental data for the speed of sound in helium within their mutual uncertainties. We suppose that our results for the density are more accurate than the available experimental data in this region of the phase diagram.
dc.description.version VoR
dc.identifier.articlenumber 074116
dc.identifier.citation J. Chem. Phys. 163, 074116 (2025)
dc.identifier.doi 10.1063/5.0282863
dc.identifier.issn 0021-9606
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/21232
dc.language.iso en
dc.publisher AIP Publishing
dc.relation.journal The Journal of Chemical Physics
dc.relation.orgunit Thermodynamik
dc.rights.accessRights open access
dc.title Calculation of thermodynamic properties using path integral Monte Carlo simulations in the canonical ensemble
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Melville, NY
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 7
oaire.citation.volume 163
Files