Publication:
Using ontologies to create logical system descriptions for fault diagnosis

cris.customurl 20443
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtualsource.department a5dc4384-6942-4dc6-9e61-904a54928c26
cris.virtualsource.department 5a48592a-0501-4524-a72f-cd50a6a1edcc
cris.virtualsource.department f318ef77-db4b-4956-9a01-97eee1ab0454
dc.contributor.author Ludwig, Björn
dc.contributor.author Diedrich, Alexander
dc.contributor.author Niggemann, Oliver
dc.date.issued 2024-10-16
dc.description.abstract With the increasing complexity of highly automated cyber-physical systems (CPS), monitoring their behavior has become crucial. Failures in these systems can be costly, halt production, or even pose risks to human safety. Effective diagnosis depends on understanding the system's components, connections, and the influences among them, knowledge typically provided by experts. However, the shift towards self-diagnosing systems necessitates this knowledge be machine-readable and interpretable. This paper introduces a novel methodology that utilizes an ontology to encode knowledge about cyber-physical systems and systematically generate propositional logical expressions. These expressions can then be evaluated using state-of-the-art diagnostic algorithms to identify failure causes. Our methodology was validated using an established AI benchmark for diagnostics. We constructed an ontology description for the underlying cyber-physical system, deduced influences of system sensors from data, and successfully diagnosed induced failures, demonstrating the efficacy and applicability of our approach.
dc.description.version VoR
dc.identifier.doi 10.1109/etfa61755.2024.10710695
dc.identifier.isbn 979-8-3503-6123-0
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/20443
dc.language.iso en
dc.publisher IEEE
dc.relation.conference 29th International Conference on Emerging Technologies and Factory Automation (ETFA 2024) ; Padova, Italy ; September 10–13, 2024
dc.relation.orgunit Informatik im Maschinenbau
dc.rights.accessRights metadata only access
dc.title Using ontologies to create logical system descriptions for fault diagnosis
dc.type Konferenzbeitrag
dcterms.bibliographicCitation.booktitle 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA)
dcterms.bibliographicCitation.originalpublisherplace Piscataway, NJ
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
Files