Publication:
Automation of PGAA spectra analysis with deep learning

cris.customurl 20431
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtualsource.department 7cda2b14-ccc0-4b00-9282-b4a7e76a7af5
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department f318ef77-db4b-4956-9a01-97eee1ab0454
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Boschmann, Daniel
dc.contributor.author Christian, Stieghorst
dc.contributor.author David, Knezevic
dc.contributor.author Loubna, Kadri
dc.contributor.author Niggemann, Oliver
dc.date.issued 2024-12-12
dc.description.abstract Analyzing Prompt Gamma Activation Analysis (PG AA) spectra poses significant challenges, particularly in accurately identifying and quantifying the elements present. Traditional expert analysis, while effective, is time-consuming. This paper addresses the need for an efficient, automated solution to enhance the analysis process. The research investigates the use of machine learning (ML) and deep learning (DL) algorithms in the automated analysis of PGAA spectra. We aim to establish a new metric for comparing automated analysis with expert analysis, providing a baseline using Linear Regression, Random Forest, 1D Convolutional Neural Network, Feed Forward Neural Network, and Autoencoder algorithms. Established metrics like Mean Square Error (MSE) and Mean Absolute Error (MAE) are utilized to compare the performance of these automated approaches against traditional expert analysis. Using actual spectra from various research projects and semi-real augmented data, the study demonstrates that the Feed Forward Neural Network (FFNN) and Autoencoder algorithms can effectively predict the magnitude of the present elements. These findings suggest especially D L algorithms could significantly assist researchers and industry personnel by providing a rough overview of the material and saving valuable time. However, the automated approach requires further refinement, particularly in handling noisy data, predicting additional crucial information, and integrating more prior knowledge into the analysis. This research offers valuable insights into the application of ML algorithms in spectral analysis and lays a foundation for further advancements in the field.
dc.description.version VoR
dc.identifier.doi 10.1109/INDIN58382.2024.10774320
dc.identifier.isbn 979-8-3315-2747-1
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/20431
dc.language.iso en
dc.publisher IEEE
dc.relation.conference 22nd International Conference on Industrial Informatics (INDIN 2024) ; Beijing, China ; August 18–20, 2024
dc.relation.orgunit Informatik im Maschinenbau
dc.relation.project EvalSpek-ML
dc.rights.accessRights metadata only access
dc.title Automation of PGAA spectra analysis with deep learning
dc.type Conference paper
dcterms.bibliographicCitation.booktitle 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN)
dcterms.bibliographicCitation.originalpublisherplace Piscataway, NJ
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
Files