Publication:
Soft-clipping autoregressive models for ordinal time series

cris.customurl 20200
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department 13af2a1a-b875-4fb0-8945-43ad84dd08b9
dc.contributor.author Weiß, Christian H.
dc.contributor.author Swidan, Osama
dc.date.issued 2025-05-01
dc.description This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
dc.description.abstract The linear autoregressive models are among the most popular models in the practice of time series analysis, which constitutes an incentive to adapt them to ordinal time series as well. Our starting point for modeling ordinal time series data is the latent variable approach to define a generalized linear model. This method, however, typically leads to a non-linear relationship between the past observations and the current conditional cumulative distribution function (cdf). To overcome this problem, we use the soft-clipping link to obtain an approximately linear model structure and propose a wide and flexible class of soft-clipping autoregressive (scAR) models. The constraints imposed on the model parameters allow us to identify relevant special cases of the scAR model family. We study the calculation of transition probabilities as well as approximate formulae for the CDF. Our proposals are illustrated by numerical examples and simulation experiments, where the performance of maximum likelihood estimation as well as model selection is analyzed. The novel model family is successfully applied to a real-world ordinal time series from finance.
dc.description.version VoR
dc.identifier.articlenumber e70015
dc.identifier.doi 10.1002/asmb.70015
dc.identifier.issn 1526-4025
dc.identifier.scopus 2-s2.0-105004410138
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/20200
dc.language.iso en
dc.publisher Wiley
dc.relation.journal Applied Stochastic Models in Business and Industry
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Conditional regression model
dc.subject Linear models
dc.subject Ordinal time series
dc.subject Soft-clipping link
dc.title Soft-clipping autoregressive models for ordinal time series
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Chichester
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 3
oaire.citation.volume 41
Files