Publication:
An improved simulation methodology for nanoparticle injection through aerodynamic lens systems

cris.customurl 19892
cris.virtual.department Strömungsmechanik
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department High Performance Computing
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtualsource.department e8520f64-b91b-40f5-b88e-8607145ef2dd
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 25ba2e6f-9989-47a4-aa6b-0908992396e8
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department ba61e71a-d073-4609-89b6-c10b460b09a8
dc.contributor.author Peravali, Surya Kiran
dc.contributor.author Samanta, Amit K.
dc.contributor.author Amin, Muhamed
dc.contributor.author Neumann, Philipp
dc.contributor.author Küpper, Jochen
dc.contributor.author Breuer, Michael
dc.date.issued 2025-03-26
dc.description All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract Aerosol injectors applied in single-particle diffractive imaging experiments demonstrated their potential in efficiently delivering nanoparticles with high density. Continuous optimization of injector design is crucial for achieving high-density particle streams, minimizing background gas, enhancing x-ray interactions, and generating high-quality diffraction patterns. We present an updated simulation framework designed for the fast and effective exploration of the experimental parameter space to enhance the optimization process. The framework includes both the simulation of the carrier gas and the particle trajectories within injectors and their expansion into the experimental vacuum chamber. A hybrid molecular-continuum-simulation method [direct simulation Monte Carlo (DSMC)/computational fluid dynamics (CFD)] is utilized to accurately capture the multi-scale nature of the flow. The simulation setup, initial benchmark results of the coupled approach, and the validation of the entire methodology against experimental data are presented. The results of the enhanced methodology show a significant improvement in the prediction quality compared to previous approaches.
dc.description.version VoR
dc.identifier.articlenumber 033380
dc.identifier.citation Phys. Fluids 37, 033380 (2025); doi: 10.1063/5.0260295
dc.identifier.doi 10.1063/5.0260295
dc.identifier.issn 1089-7666
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/19892
dc.language.iso en
dc.publisher American Institute of Physics
dc.relation.journal Physics of Fluids
dc.relation.orgunit Strömungsmechanik
dc.relation.orgunit High Performance Computing
dc.relation.project DASHH Graduate School
dc.rights.accessRights metadata only access
dc.subject Nanoparticle injection
dc.subject Aerodynamic lens system
dc.subject Direct simulation Monte Carlo (DSMC)
dc.subject Computational fluid dynamics (CFD)
dc.subject.ddc 000 Informatik, Information & Wissen, allgemeine Werke
dc.subject.ddc 500 Naturwissenschaften
dc.subject.ddc 600 Technik
dc.title An improved simulation methodology for nanoparticle injection through aerodynamic lens systems
dc.type Research article
dcterms.bibliographicCitation.originalpublisherplace Melville, NY
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 3
oaire.citation.volume 37
Files