Publication:
Marginal analysis of count time series in the presence of missing observations

cris.customurl 19756
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department bc0c8970-c34e-4acc-acdf-0dbcaf8c7239
dc.contributor.author Nik, Simon
dc.date.issued 2024
dc.description This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract Time series in real-world applications often have missing observations, making typical analytical methods unsuitable. One method for dealing with missing data is the concept of amplitude modulation. While this principle works with any data, here, missing data for unbounded and bounded count time series are investigated, where tailor-made dispersion and skewness statistics are used for model diagnostics. General closed-form asymptotic formulas are derived for such statistics with only weak assumptions on the underlying process. Moreover, closed-form formulas are derived for the popular special cases of Poisson and binomial autoregressive processes, always under the assumption that missingness occurs. The finite-sample performances of the considered asymptotic approximations are analyzed with simulations. The practical application of the corresponding dispersion and skewness tests under missing data is demonstrated with three real data examples.
dc.description.version VoR
dc.identifier.doi 10.1007/s11749-024-00938-6
dc.identifier.issn 1863-8260
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/19756
dc.language.iso en
dc.publisher Springer
dc.relation.journal TEST
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Amplitude modulation
dc.subject Dispersion index
dc.subject Skewness index
dc.subject Missing data
dc.subject Poisson autoregressive model
dc.subject Binomial autoregressive model
dc.title Marginal analysis of count time series in the presence of missing observations
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Heidelberg [u.a.]
dcterms.isPartOf https://openhsu.ub.hsu-hh.de/handle/10.24405/19601
dspace.entity.type Publication
hsu.lom.import true
hsu.opac.importErsterfassung 0705:03-12-24
hsu.openaccess.funding Springer Nature (DEAL)
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 1128
oaire.citation.startPage 1105
oaire.citation.volume 33
Files