Publication:
Weighted discrete ARMA models for categorical time series

cris.customurl 19530
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department 13af2a1a-b875-4fb0-8945-43ad84dd08b9
dc.contributor.author Weiß, Christian H.
dc.contributor.author Swidan, Osama
dc.date.issued 2024-09-06
dc.description This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract A new and flexible class of ARMA-like (autoregressive moving average) models for nominal or ordinal time series is proposed, which are characterized by using so-called weighting operators and are, thus, referred to as weighted discrete ARMA (WDARMA) models. By choosing an appropriate type of weighting operator, one can model, for example, nominal time series with negative serial dependencies, or ordinal time series where transitions to neighboring states are more likely than sudden large jumps. Essential stochastic properties of WDARMA models are derived, such as the existence of a stationary, ergodic, and -mixing solution as well as closed-form formulae for marginal and bivariate probabilities. Numerical illustrations as well as simulation experiments regarding the finite-sample performance of maximum likelihood estimation are presented. The possible benefits of using an appropriate weighting scheme within the WDARMA class are demonstrated by a real-world data application.
dc.description.version HSU-Of
dc.identifier.doi 10.1111/jtsa.12773
dc.identifier.issn 1467-9892
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/19530
dc.language.iso en
dc.publisher Wiley-Blackwell
dc.relation.journal Journal of time series analysis
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Discrete ARMA model
dc.subject Markov chain
dc.subject Negative serial dependence
dc.subject Ordinal time series
dc.subject Qualitative data
dc.subject Weighting operator
dc.title Weighted discrete ARMA models for categorical time series
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Oxford [u.a.]
dspace.entity.type Publication
hsu.contributor.identifier Weiß, Christian;518392252;gnd/132130149
hsu.lom.import true
hsu.opac.importErsterfassung 0705:05-12-24
hsu.openaccess.funding Wiley (DEAL)
hsu.peerReviewed
hsu.uniBibliography
Files