Publication:
Partial autocorrelation diagnostics for count time series

cris.customurl 19043
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Weiß, Christian H.
dc.contributor.author Aleksandrov, Boris
dc.contributor.author Faymonville, Maxime
dc.contributor.author Jentsch, Carsten
dc.date.issued 2023-01-04
dc.description This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract In a time series context, the study of the partial autocorrelation function (PACF) is helpful for model identification. Especially in the case of autoregressive (AR) models, it is widely used for order selection. During the last decades, the use of AR-type count processes, i.e., which also fulfil the Yule–Walker equations and thus provide the same PACF characterization as AR models, increased a lot. This motivates the use of the PACF test also for such count processes. By computing the sample PACF based on the raw data or the Pearson residuals, respectively, findings are usually evaluated based on well-known asymptotic results. However, the conditions for these asymptotics are generally not fulfilled for AR-type count processes, which deteriorates the performance of the PACF test in such cases. Thus, we present different implementations of the PACF test for AR-type count processes, which rely on several bootstrap schemes for count times series. We compare them in simulations with the asymptotic results, and we illustrate them with an application to a real-world data example.
dc.description.version VoR
dc.identifier.articlenumber 105
dc.identifier.citation Weiß, C.H.; Aleksandrov, B.; Faymonville, M.; Jentsch, C. Partial Autocorrelation Diagnostics for Count Time Series. Entropy 2023, 25, 105. https://doi.org/10.3390/e25010105
dc.identifier.doi 10.3390/e25010105
dc.identifier.issn 1099-4300
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/19043
dc.language.iso en
dc.publisher MDPI
dc.relation.journal Entropy
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Autoregressive model
dc.subject Count time series
dc.subject INAR bootstrap
dc.subject Partial autocorrelation function
dc.subject Yule–Walker equations
dc.title Partial autocorrelation diagnostics for count time series
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Basel
dcterms.isPartOf https://openhsu.ub.hsu-hh.de/handle/10.24405/19872
dspace.entity.type Publication
hsu.contributor.identifier Weiß, Christian;518392252;gnd/132130149
hsu.lom.import true
hsu.opac.importErsterfassung 0705:24-01-23
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 1
oaire.citation.volume 25
Files