Publication:
Novel goodness-of-fit tests for binomial count time series

cris.customurl 18248
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Aleksandrov, Boris
dc.contributor.author Weiß, Christian H.
dc.contributor.author Jentsch, Carsten
dc.contributor.author Faymonville, Maxime
dc.date.issued 2022-10-06
dc.description This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.description.abstract For testing the null hypothesis of a marginal binomial distribution of bounded count data, we derive novel and flexible goodness-of-fit (GoF) tests. We propose two general approaches to construct moment-based test statistics. The first one relies on properties of higher-order factorial moments, while the second one uses a so-called Stein identity being satisfied under the null. For a broad class of stationary time series processes of bounded counts with joint bivariate binomial distributions of lagged time series values, we derive the limiting distributions of the proposed GoF-test statistics. Among others, our setup covers the binomial autoregressive model, but includes also other binomial time series obtained, e. g. by superpositioning independent binary time series. The test performance under the null and under different alternatives is investigated in simulations. Two data examples are used to illustrate the application of the novel GoF-tests in practice.
dc.description.version VoR
dc.identifier.doi 10.1080/02331888.2022.2134384
dc.identifier.issn 1029-4910
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/18248
dc.language.iso en
dc.publisher Taylor & Francis
dc.relation.journal Statistics
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Binomial AR(1) model
dc.subject Bivariate binomial distribution
dc.subject Count time series
dc.subject Diagnostic tests
dc.subject Factorial moments
dc.subject Stein’s identity
dc.title Novel goodness-of-fit tests for binomial count time series
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace London [u.a.]
dspace.entity.type Publication
hsu.contributor.identifier Aleksandrov, Boris;167570502X;gnd/1193948452
hsu.contributor.identifier Weiß, Christian;518392252;gnd/132130149
hsu.lom.import true
hsu.opac.importErsterfassung 0705:15-01-24
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 990
oaire.citation.issue 5
oaire.citation.startPage 957
oaire.citation.volume 56
Files