Publication:
Semiparametric estimation of INAR models using roughness penalization

cris.customurl 17894
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtual.departmentbrowse Quantitative Methoden der Wirtschaftswissenschaften
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 5cc773d2-af25-4efe-91fa-7c012213771e
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Faymonville, Maxime
dc.contributor.author Jentsch, Carsten
dc.contributor.author Weiß, Christian H.
dc.contributor.author Aleksandrov, Boris
dc.date.issued 2022-09-21
dc.description This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
dc.description.abstract Popular models for time series of count data are integer-valued autoregressive (INAR) models, for which the literature mainly deals with parametric estimation. In this regard, a semiparametric estimation approach is a remarkable exception which allows for estimation of the INAR models without any parametric assumption on the innovation distribution. However, for small sample sizes, the estimation performance of this semiparametric estimation approach may be inferior. Therefore, to improve the estimation accuracy, we propose a penalized version of the semiparametric estimation approach, which exploits the fact that the innovation distribution is often considered to be smooth, i.e. two consecutive entries of the PMF differ only slightly from each other. This is the case, for example, in the frequently used INAR models with Poisson, negative binomially or geometrically distributed innovations. For the data-driven selection of the penalization parameter, we propose two algorithms and evaluate their performance. In Monte Carlo simulations, we illustrate the superiority of the proposed penalized estimation approach and argue that a combination of penalized and unpenalized estimation approaches results in overall best INAR model fits.
dc.description.version VoR
dc.identifier.doi 10.1007/s10260-022-00655-0
dc.identifier.issn 1613-981X
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/17894
dc.language.iso en
dc.publisher Springer
dc.relation.journal Statistical methods & applications
dc.relation.orgunit Quantitative Methoden der Wirtschaftswissenschaften
dc.rights.accessRights metadata only access
dc.subject Count data
dc.subject Penalized estimation
dc.subject Integer-valued autoregressions
dc.subject Innovation distribution
dc.subject Validation
dc.title Semiparametric estimation of INAR models using roughness penalization
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace [Berlin]
dspace.entity.type Publication
hsu.contributor.identifier Weiß, Christian;518392252;gnd/132130149
hsu.lom.import true
hsu.openaccess.funding Springer Nature (DEAL)
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 400
oaire.citation.startPage 365
oaire.citation.volume 32
Files