Publication:
Acceleration of first-principles atomistic simulations with Bayesian neural networks

cris.customurl 17156
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtualsource.department 26468bc2-6729-4a47-a6aa-a256f8c41839
cris.virtualsource.department f318ef77-db4b-4956-9a01-97eee1ab0454
dc.contributor.author Rensmeyer, Tim
dc.contributor.author Niggemann, Oliver
dc.date.issued 2025-03-25
dc.description.abstract Molecular dynamics simulations with first-principles methods, such as density functional theory, are a cornerstone in the development of new battery and fuel cell materials. However, due to their high computational demand, their application is mostly limited to small systems and short time horizons. AI-based methods are a promising approach for accelerating first-principles simulations while maintaining high simulation accuracy. A key challenge, however, is the efficient training of such AI-based methods for specific systems of interest. In this article, we provide an overview of the training approach being researched at the Professorship of Computer Science in Mechanical Engineering at Helmut-Schmidt University, Hamburg.
dc.description.version VoR
dc.identifier.doi 10.24405/17156
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/17156
dc.language.iso en
dc.publisher Universitätsbibliothek der HSU/UniBw H
dc.relation.orgunit Informatik im Maschinenbau
dc.rights.accessRights open access
dc.subject Machine learning
dc.subject Molecular dynamics
dc.subject Materials development
dc.subject Fuel cells
dc.title Acceleration of first-principles atomistic simulations with Bayesian neural networks
dc.type Sammelbandbeitrag oder Buchkapitel
dcterms.bibliographicCitation.booktitle Hamburger Energieinfrastruktur – Anforderungen, Problemstellungen und Lösungsansätze
dcterms.bibliographicCitation.originalpublisherplace Hamburg
dcterms.isPartOf https://openhsu.ub.hsu-hh.de/handle/10.24405/17162
dspace.entity.type Publication
hsu.uniBibliography
oaire.citation.endPage 76
oaire.citation.startPage 73
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
openHSU_17156.pdf
Size:
276.5 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
524 B
Format:
Item-specific license agreed upon to submission
Description: