Publication: Acceleration of first-principles atomistic simulations with Bayesian neural networks
cris.customurl | 17156 | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtualsource.department | 26468bc2-6729-4a47-a6aa-a256f8c41839 | |
cris.virtualsource.department | f318ef77-db4b-4956-9a01-97eee1ab0454 | |
dc.contributor.author | Rensmeyer, Tim | |
dc.contributor.author | Niggemann, Oliver | |
dc.date.issued | 2025-03-25 | |
dc.description.abstract | Molecular dynamics simulations with first-principles methods, such as density functional theory, are a cornerstone in the development of new battery and fuel cell materials. However, due to their high computational demand, their application is mostly limited to small systems and short time horizons. AI-based methods are a promising approach for accelerating first-principles simulations while maintaining high simulation accuracy. A key challenge, however, is the efficient training of such AI-based methods for specific systems of interest. In this article, we provide an overview of the training approach being researched at the Professorship of Computer Science in Mechanical Engineering at Helmut-Schmidt University, Hamburg. | |
dc.description.version | VoR | |
dc.identifier.doi | 10.24405/17156 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/17156 | |
dc.language.iso | en | |
dc.publisher | Universitätsbibliothek der HSU/UniBw H | |
dc.relation.orgunit | Informatik im Maschinenbau | |
dc.rights.accessRights | open access | |
dc.subject | Machine learning | |
dc.subject | Molecular dynamics | |
dc.subject | Materials development | |
dc.subject | Fuel cells | |
dc.title | Acceleration of first-principles atomistic simulations with Bayesian neural networks | |
dc.type | Sammelbandbeitrag oder Buchkapitel | |
dcterms.bibliographicCitation.booktitle | Hamburger Energieinfrastruktur – Anforderungen, Problemstellungen und Lösungsansätze | |
dcterms.bibliographicCitation.originalpublisherplace | Hamburg | |
dcterms.isPartOf | https://openhsu.ub.hsu-hh.de/handle/10.24405/17162 | |
dspace.entity.type | Publication | |
hsu.uniBibliography | ✅ | |
oaire.citation.endPage | 76 | |
oaire.citation.startPage | 73 |