Publication:
Validation of a laboratory-scale inverters role in forming a standalone multi-energy microgrid

cris.customurl16714
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtualsource.department02e167be-cbca-4ce8-a12c-17f81792c0aa
cris.virtualsource.department98150094-8f5c-4cb8-a579-1cede9ddb3af
cris.virtualsource.departmentcf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.authorGómez Anccas, Edgar Diego
dc.contributor.authorPourhossein, Kazem
dc.contributor.authorSchulz, Detlef
dc.date.issued2024
dc.description.abstractUtilizing multi-energy renewable microgrids is a promising prospect for decentralized electric power generation. To form a multi-energy microgrid and integrate different renewable energy sources, grid-forming inverters are the core elements. Therefore, their performance has to be tested and validated to increase the quality and reliability of the power supply. The present paper investigates the suitability of a specifically designed and implemented grid-forming inverter as the central component in such microgrid systems. Quality of black-start, frequency and voltage regulation, fast transient response, energy efficiency, low harmonic distortion, proper power factor control, synchronization and phase alignment for integration of renewable energy sources and energy storage devices such as photovoltaics and lithium-ion battery bank, respectively, fault-ride through capability, and resilience to fluctuations imposed by loads are the main features that have been tested and validated for a laboratory-scale grid-forming inverter. The study focuses on the parameters essential for ensuring the reliable and efficient operation of the inverter in dynamic and diverse energy environments, especially its adaptability to varying load profiles and its resilience towards intermittent energy inputs. The findings from this performance evaluation contribute insights for engineers, researchers, and industry professionals involved in the design, deployment, and optimization of multi-energy microgrids.
dc.description.versionVoR
dc.identifier.doi10.1049/icp.2024.1829
dc.identifier.isbn978-1-83724-148-4
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/16714
dc.language.isoen
dc.publisherIET
dc.relation.conference8th International Hybrid Power Plants & Systems Workshop (HYB 2024), 14-15 May 2024 ; Azores, Portugal
dc.relation.orgunitElektrische Energiesysteme
dc.relation.projectIT-gestützte Sektorenkopplung: Digital gesteuerte Brennstoffzellen- und Elektrolysetechnologie für stationäre und mobile Anwendungen
dc.rights.accessRightsmetadata only access
dc.subjectDistributed power generation
dc.subjectPower supply quality
dc.subjectRenewable energy sources
dc.subjectHarmonic distortion
dc.subjectTransient response
dc.subjectPower generation control
dc.subjectPower grid
dc.subjectInverter
dc.subjectVoltage control
dc.subject.ddc620 Ingenieurwissenschaften
dc.titleValidation of a laboratory-scale inverters role in forming a standalone multi-energy microgrid
dc.typeKonferenzbeitrag
dcterms.bibliographicCitation.booktitle8th International Hybrid Power Plants & Systems Workshop (HYB 2024)
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage142
oaire.citation.startPage136
Files