Publication:
Bus charging management based on AI prediction and MILP optimization

cris.customurl 16662
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtualsource.department 1bf9edd6-8458-4bf9-8a92-b22daf50dca7
cris.virtualsource.department a086847b-19cf-4487-a89c-bbe05c678537
cris.virtualsource.department 556bc6db-c059-40a7-aae3-9615d12e4576
cris.virtualsource.department cf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.author Avdevicius, Edvard
dc.contributor.author Eskander, Mina
dc.contributor.author Plenz, Maik
dc.contributor.author Schulz, Detlef
dc.date.issued 2023-07-04
dc.description.abstract The emergence of new energy optimisation and control technologies with the concept of power system flexibility is a promising way to achieve the desired optimum, secure management within the smart grid and green energy transition. In this context, demand response is available through flexible demand management, taking into account various technical and time constraints. Accordingly, the aim of this paper is to address existing constraints in the field of electric mobility, in particular the operation of the charging infrastructure of bus depots, in order to actively and effectively participate in demand response events by forecasting day-ahead charging costs and load profiles of public transport infrastructure. In line with the development of a methodology for forecasting more accurately, this paper develops a prediction model based on machine learning (ML). A charging schedule is then produced based on Mixed-Integer Linear Programming (MILP) with various objective function scenarios, taking into consideration the electricity price forecast and load distribution. As a result, calculating new provisional load profiles involves assessing the flexibility potential of the bus fleet and preparing solutions in advance based on the electricity market situation.
dc.description.version VoR
dc.identifier.isbn 978-3-8007-6108-1
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16662
dc.language.iso en
dc.publisher VDE Verlag
dc.publisher IEEE
dc.relation.conference ETG Congress 2023: Kassel, Germany, 25-26 May 2023
dc.relation.orgunit Elektrische Energiesysteme
dc.relation.project KoLa
dc.rights.accessRights metadata only access
dc.subject Charging management
dc.subject MILP optimization
dc.subject Electric buses
dc.subject Artificial intelligence
dc.subject.ddc 620 Ingenieurwissenschaften
dc.title Bus charging management based on AI prediction and MILP optimization
dc.type Konferenzbeitrag
dcterms.bibliographicCitation.booktitle ETG Congress 2023 : 25-26 May 2023
dcterms.bibliographicCitation.originalpublisherplace Berlin
dcterms.bibliographicCitation.originalpublisherplace [Piscataway, NJ]
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 968
oaire.citation.startPage 961
Files