Publication:
Energy market predictions with hybrid neural network 1D-CNN-BiGRU

cris.customurl 16657
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtualsource.department 1bf9edd6-8458-4bf9-8a92-b22daf50dca7
cris.virtualsource.department a086847b-19cf-4487-a89c-bbe05c678537
cris.virtualsource.department cf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.author Avdevicius, Edvard
dc.contributor.author Eskander, Mina
dc.contributor.author Schulz, Detlef
dc.date.issued 2024-01-30
dc.description 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE): Grenoble, France, 23-26 October 2023, IEEE, DOI: 10.1109/ISGTEUROPE56780.2023.10407298
dc.description.abstract Electricity price forecasting is important for managing supply and demand, planning investments in energy projects, ensuring energy security and efficient use of resources. This paper presents a hybrid neural network of two types of neural networks: the convolutional neural network (CNN) and the recurrent neural network (RNN) for energy market data analysis to forecast electricity prices. CNN is used to extract features from the raw data by applying a convolution operation on the temporal axis with different filters. At the same time, bidirectional gated recurrent units (BiGRU) of RNN are used for subsequent analysis of the temporal dependence of the extracted features, allowing the historical data to be considered. BiGRU is particularly useful for applications where the current input depends on past and future contexts. Thus, the ID-CNN-BiGRU method allows effective time series analysis and prediction of future values and can be widely used in the tasks of forecasting electricity prices, stocks, traffic, and other time series. The results indicate that the presented model is promising for use in a highly dynamic energy market.
dc.description.version VoR
dc.identifier.doi 10.1109/isgteurope56780.2023.10407298
dc.identifier.isbn 979-8-3503-9678-2
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16657
dc.language.iso en
dc.publisher IEEE
dc.relation.conference 2023 IEEE PES Innovative Smart Grid Technologies Europe ; (Grenoble) : 2023.10.23-26
dc.relation.orgunit Elektrische Energiesysteme
dc.relation.project KoLa
dc.rights.accessRights metadata only access
dc.subject Forecasting
dc.subject Neural network
dc.subject CNN
dc.subject GRU
dc.subject.ddc 620 Ingenieurwissenschaften
dc.title Energy market predictions with hybrid neural network 1D-CNN-BiGRU
dc.type Konferenzbeitrag
dcterms.bibliographicCitation.booktitle Proceedings of the 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-EUROPE)
dcterms.bibliographicCitation.originalpublisherplace [Piscataway, NJ]
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
Files