Publication:
AI-based charging management for the integration of electric vehicles using a reference low voltage grid in Hamburg

cris.customurl16650
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentTheoretische Elektrotechnik
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentMaschinenelemente und Rechnergestützte Produktentwicklung
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentTheoretische Elektrotechnik
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseMaschinenelemente und Rechnergestützte Produktentwicklung
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseMaschinenelemente und Rechnergestützte Produktentwicklung
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseMaschinenelemente und Rechnergestützte Produktentwicklung
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseMaschinenelemente und Rechnergestützte Produktentwicklung
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseTheoretische Elektrotechnik
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtualsource.department23fe010b-1e53-46ae-b60d-e0acbd108de7
cris.virtualsource.department32a4ebd1-feb9-4550-ae44-d7df0718aaee
cris.virtualsource.departmentd03f39d3-2fdf-444a-aa50-49d3a98e0a01
cris.virtualsource.department1bf9edd6-8458-4bf9-8a92-b22daf50dca7
cris.virtualsource.departmentbffce9fd-7897-4f0e-b64a-d770656d1d99
cris.virtualsource.department0138c6f1-bcf9-4fe2-adb6-40a66e8ca5e5
cris.virtualsource.department315dcfc7-796e-45b1-8286-b798c71396fc
cris.virtualsource.departmentee210bd0-413a-4155-8b03-938f83deefbd
cris.virtualsource.department556bc6db-c059-40a7-aae3-9615d12e4576
cris.virtualsource.departmentae5f4072-5ba0-47e5-8307-03451a3c4b5c
cris.virtualsource.departmentcf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.authorFu, Yuzhuo
dc.contributor.authorVersen, Dennis Salvador
dc.contributor.authorStadler, Andreas
dc.contributor.authorAvdevicius, Edvard
dc.contributor.authorMavraj, Gazmend
dc.contributor.authorJebali ep Samet, Meriam
dc.contributor.authorPinke, Nils
dc.contributor.authorSchmalholz, Oliver
dc.contributor.authorPlenz, Maik
dc.contributor.authorStiemer, Marcus
dc.contributor.authorSchulz, Detlef
dc.date.issued2023-02-17
dc.description.abstractIn recent years, electric vehicles (EVs) are considered to be a promising way to reduce greenhouse gas emissions from the transportation sector. However, the increasing penetration of EVs into the distribution network (DN) raises serious concerns about the network’s safe and reliable operation. The uncontrolled EV charging with random behavior will lead to volatile load peaks on the distribution transformer. In order to obtain more transformer loading capacity available for integration of further EVs, distributed energy resources (DERs) and related devices, such as heat pumps, the transformer loading must be limited to a certain range. For this reason, an intelligent charging management based on model-free Reinforcement Learning (RL) is proposed in this work. The RL management is able to control the charging power of all EVs connected to the network without previous knowledge about the arriving- and leaving time. The needed information for the RL-agent to perceive the current state of the system is formed with cumulated values such as the total energy requirement and the total charging power demand of all EVs. In this paper, the RL algorithm is trained on real-world energy consumption data for a month and on a reference network, created with selected characteristics of a substation network area in the northeast of Hamburg. Comparing with uncontrolled charging, the simulation results show that the RL-based charging management avoids 99 % of threshold violations regarding transformer loading and results in 1% of EV energy requirement is not satisfied. Through sensitivity analysis regarding the state space representation in the employed RL process, the necessity of providing the state of charge (SOC) or the energy requirements of EV users are proven to improve the charging control performance.
dc.description.versionVoR
dc.identifier.isbn978-3-8007-5983-5
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/16650
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10048092
dc.language.isoen
dc.publisherVDE Verlag
dc.publisherIEEE
dc.relation.conferenceNEIS 2022 - Conference on Sustainable Energy Supply and Energy Storage Systems
dc.relation.orgunitElektrische Energiesysteme
dc.relation.projectDigitalisierung und Elektromobilität
dc.rights.accessRightsmetadata only access
dc.subjectElectric vehicle
dc.subjectDistribution network
dc.subjectCharging management
dc.subjectReinforcement learning
dc.subject.ddc620 Ingenieurwissenschaften
dc.titleAI-based charging management for the integration of electric vehicles using a reference low voltage grid in Hamburg
dc.typeKonferenzbeitrag
dcterms.bibliographicCitation.booktitleNEIS 2022 : Conference on Sustainable Energy Supply and Energy Storage Systems
dcterms.bibliographicCitation.originalpublisherplaceBerlin
dcterms.bibliographicCitation.originalpublisherplace[Piscataway, NJ]
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage243
oaire.citation.startPage236
Files