Publication:
Large-signal time-domain equivalent circuit model for PEM fuel cell stacks

cris.customurl16599
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtualsource.department57c58b63-fb55-4060-8d05-08e966b08328
cris.virtualsource.department37dd9e10-ca45-44d8-ab2a-d2464e847d47
cris.virtualsource.departmentdc42b45d-2396-4b4f-9eb9-59cb1b721f32
cris.virtualsource.departmentcf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.authorBaum, Lukas
dc.contributor.authorSchumann, Marc
dc.contributor.authorGrumm, Florian
dc.contributor.authorSchulz, Detlef
dc.date.issued2024-01-02
dc.description.abstractHydrogen fuel cells have become one of the most viable power sources for electric aircraft. Models representing the electrical behavior of the fuel cell stack over the full dynamic operation region are essential for the development of power electronic energy systems powered by fuel cell stacks. This work presents an electrical equivalent circuit model for PEM fuel cell stacks representing the static and dynamic electrical behavior of the fuel cell stack under pulsed loads up to frequencies of 10 kHz. Dynamic phenomena on time scales slower than the considered timescale of power-electronic switching, such as reactant flow, membrane hydration, and temperature effects, are considered stationary. The parameterization method proposed is developed on measured data from a 110 W PEM fuel cell stack and validated with a set of measured data from a 2 kW stack. The time-domain simulated behavior of the parameterized model shows an accurate representation of the measured behavior: the parameterized model reproduces both the static polarization behavior and the behavior under high-frequency pulsed loading with errors of less than 1% with respect to the nominal stack voltage. The model is suitable for dynamic simulation of power electronic systems directly connected to fuel cell stacks and can be parameterized without special electrochemical impedance spectroscopy measurements.
dc.description.versionVoR
dc.identifier.doi10.1016/j.ijhydene.2023.07.240
dc.identifier.issn0360-3199
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/16599
dc.language.isoen
dc.publisherElsevier
dc.relation.journalInternational Journal of Hydrogen Energy
dc.relation.orgunitElektrische Energiesysteme
dc.relation.projectBETA
dc.rights.accessRightsmetadata only access
dc.subjectReal-time simulation
dc.subjectSwitching dynamics
dc.subjectCurrent pulse injection
dc.subjectParameter estimation
dc.subjectPower-electronic converter
dc.subjectElectric aircraft
dc.subject.ddc620 Ingenieurwissenschaften
dc.titleLarge-signal time-domain equivalent circuit model for PEM fuel cell stacks
dc.typeForschungsartikel
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage1299
oaire.citation.issuePart A
oaire.citation.startPage1285
oaire.citation.volume52
Files