Publication:
Large-signal time-domain equivalent circuit model for PEM fuel cell stacks

cris.customurl 16599
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtualsource.department 57c58b63-fb55-4060-8d05-08e966b08328
cris.virtualsource.department 37dd9e10-ca45-44d8-ab2a-d2464e847d47
cris.virtualsource.department dc42b45d-2396-4b4f-9eb9-59cb1b721f32
cris.virtualsource.department cf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.author Baum, Lukas
dc.contributor.author Schumann, Marc
dc.contributor.author Grumm, Florian
dc.contributor.author Schulz, Detlef
dc.date.issued 2024-01-02
dc.description.abstract Hydrogen fuel cells have become one of the most viable power sources for electric aircraft. Models representing the electrical behavior of the fuel cell stack over the full dynamic operation region are essential for the development of power electronic energy systems powered by fuel cell stacks. This work presents an electrical equivalent circuit model for PEM fuel cell stacks representing the static and dynamic electrical behavior of the fuel cell stack under pulsed loads up to frequencies of 10 kHz. Dynamic phenomena on time scales slower than the considered timescale of power-electronic switching, such as reactant flow, membrane hydration, and temperature effects, are considered stationary. The parameterization method proposed is developed on measured data from a 110 W PEM fuel cell stack and validated with a set of measured data from a 2 kW stack. The time-domain simulated behavior of the parameterized model shows an accurate representation of the measured behavior: the parameterized model reproduces both the static polarization behavior and the behavior under high-frequency pulsed loading with errors of less than 1% with respect to the nominal stack voltage. The model is suitable for dynamic simulation of power electronic systems directly connected to fuel cell stacks and can be parameterized without special electrochemical impedance spectroscopy measurements.
dc.description.version VoR
dc.identifier.doi 10.1016/j.ijhydene.2023.07.240
dc.identifier.issn 0360-3199
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16599
dc.language.iso en
dc.publisher Elsevier
dc.relation.journal International Journal of Hydrogen Energy
dc.relation.orgunit Elektrische Energiesysteme
dc.relation.project BETA
dc.rights.accessRights metadata only access
dc.subject Real-time simulation
dc.subject Switching dynamics
dc.subject Current pulse injection
dc.subject Parameter estimation
dc.subject Power-electronic converter
dc.subject Electric aircraft
dc.subject.ddc 620 Ingenieurwissenschaften
dc.title Large-signal time-domain equivalent circuit model for PEM fuel cell stacks
dc.type Forschungsartikel
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 1299
oaire.citation.issue Part A
oaire.citation.startPage 1285
oaire.citation.volume 52
Files