Publication:
Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers

cris.customurl16589
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtual.departmentbrowseElektrische Energiesysteme
cris.virtualsource.department51981e22-2d70-4fa3-bdac-3774d37e842b
cris.virtualsource.department37dd9e10-ca45-44d8-ab2a-d2464e847d47
cris.virtualsource.department6b8e7299-4ddc-445e-a16c-154409910b3a
cris.virtualsource.departmentcf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.authorCosse, Carsten
dc.contributor.authorSchumann, Marc
dc.contributor.authorBecker, Daniel
dc.contributor.authorSchulz, Detlef
dc.date.issued2022-02-08
dc.description.abstractThe dynamic controllability of the fuel cell could be improved by the addition of an electric field modifier (EFM), to selectively boost or attenuate the flux of protons through the membrane and, thereby, influence cell performance. This approach follows the commonly accepted idea of the potential gradient across the membrane being the main driving force behind the proton transport in the membrane. To evaluate the applicability of the idea, a simulation model for a membrane with an integrated EFM is developed to study the effects on the membrane behaviour. First, a modified Poisson-Boltzmann-Model (1D) is developed to characterise the capacitive behaviour of the double layer at the EFM. The approach considers steric restrictions in the membrane pores to estimate the double layer capacitance and the range of the effect at the EFM. Second, the characteristic behaviour of the capacitance is implemented in a secondary current distribution model (2D) as a variable capacitance. In transient simulations, boost of the cell current by up to 82% and attenuation up to a complete reversal of the direction compared to the stationary operation are achieved. Thus, it was possible to show the potential of EFMs to influence the characteristics of fuel cells and electrolysers during transient operation.
dc.description.versionVoR
dc.identifier.doi10.1016/j.ijhydene.2021.12.116
dc.identifier.issn1879-3487
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/16589
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.relation.journalInternational Journal of Hydrogen Energy
dc.relation.orgunitElektrische Energiesysteme
dc.relation.projectStBZuEL
dc.rights.accessRightsmetadata only access
dc.subjectElectrically controllable membrane electrode assembly
dc.subjectElectric field modifier
dc.subjectProton exchange membrane fuel cells
dc.subjectDynamic behaviour
dc.subjectDynamic control
dc.subjectDouble layer capacitance
dc.subject.ddc620 Ingenieurwissenschaften
dc.titleSimulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers
dc.typeForschungsartikel
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY [u.a.]
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage7974
oaire.citation.issue12
oaire.citation.startPage7961
oaire.citation.volume47
Files