Publication:
Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers

cris.customurl 16589
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtualsource.department 51981e22-2d70-4fa3-bdac-3774d37e842b
cris.virtualsource.department 37dd9e10-ca45-44d8-ab2a-d2464e847d47
cris.virtualsource.department 6b8e7299-4ddc-445e-a16c-154409910b3a
cris.virtualsource.department cf2f1449-4752-40e2-96c8-2f14ef2675ef
dc.contributor.author Cosse, Carsten
dc.contributor.author Schumann, Marc
dc.contributor.author Becker, Daniel
dc.contributor.author Schulz, Detlef
dc.date.issued 2022-02-08
dc.description.abstract The dynamic controllability of the fuel cell could be improved by the addition of an electric field modifier (EFM), to selectively boost or attenuate the flux of protons through the membrane and, thereby, influence cell performance. This approach follows the commonly accepted idea of the potential gradient across the membrane being the main driving force behind the proton transport in the membrane. To evaluate the applicability of the idea, a simulation model for a membrane with an integrated EFM is developed to study the effects on the membrane behaviour. First, a modified Poisson-Boltzmann-Model (1D) is developed to characterise the capacitive behaviour of the double layer at the EFM. The approach considers steric restrictions in the membrane pores to estimate the double layer capacitance and the range of the effect at the EFM. Second, the characteristic behaviour of the capacitance is implemented in a secondary current distribution model (2D) as a variable capacitance. In transient simulations, boost of the cell current by up to 82% and attenuation up to a complete reversal of the direction compared to the stationary operation are achieved. Thus, it was possible to show the potential of EFMs to influence the characteristics of fuel cells and electrolysers during transient operation.
dc.description.version VoR
dc.identifier.doi 10.1016/j.ijhydene.2021.12.116
dc.identifier.issn 1879-3487
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16589
dc.language.iso en
dc.publisher Elsevier
dc.relation.ispartof International Journal of Hydrogen Energy
dc.relation.journal International Journal of Hydrogen Energy
dc.relation.orgunit Elektrische Energiesysteme
dc.relation.project StBZuEL
dc.rights.accessRights metadata only access
dc.subject Electrically controllable membrane electrode assembly
dc.subject Electric field modifier
dc.subject Proton exchange membrane fuel cells
dc.subject Dynamic behaviour
dc.subject Dynamic control
dc.subject Double layer capacitance
dc.subject.ddc 620 Ingenieurwissenschaften
dc.title Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace New York, NY [u.a.]
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage 7974
oaire.citation.issue 12
oaire.citation.startPage 7961
oaire.citation.volume 47
Files