Publication:
Modeling Magnetic Fields around Stranded Electrical Transmission Lines via Finite Element Analysis (FEA)

cris.customurl 16578
cris.virtual.department Elektrische Energiesysteme
cris.virtual.department Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtual.departmentbrowse Elektrische Energiesysteme
cris.virtualsource.department cf2f1449-4752-40e2-96c8-2f14ef2675ef
cris.virtualsource.department fe7f96f4-d1dc-4d7a-a3bb-a26c9ea56e78
dc.contributor.author Alosmani, Khaled
dc.contributor.author Schulz, Detlef
dc.date.issued 2024-02-07
dc.description.abstract This paper aims to design the fundamental basis for an Unmanned Aerial System (UAS)-driven, remote, and non-invasive current sensing application. Using the COMSOL software, the methodology presented here consists of the Computer Aided Design (CAD) for stranded Transmission Line (TL) geometries composed of 7 to 91 sub-filaments and discretized via tetrahedral-element-based meshes. The radiated Magnetic Field (MF) around each TL is then solved by means of Finite Element Analysis (FEA) after selecting the proper materials for TLs under the coil geometry analysis study. For each TL, all resultant MFs’ norms are presented as tabulated data, with respect to the inducing currents. Eventually, the complex mathematical model needed to evaluate these MFs, radiated around stranded TLs, is surpassed by the scalable models designed through this study. The min/max MFs radiated around each TL resulting from the min/max injected current values are hence obtained. This would serve in the accurate choosing/positioning of magnetic-based sensors in UAS applications, reliably. Additionally, related future works are concretely presented.
dc.description.version VoR
dc.identifier.citation Osmani, K.; Schulz, D. Modeling Magnetic Fields around Stranded Electrical Transmission Lines via Finite Element Analysis (FEA). Energies 2024, 17, 801. https://doi.org/10.3390/ en17040801
dc.identifier.doi 10.3390/en17040801
dc.identifier.issn 1996-1073
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16578
dc.language.iso en
dc.publisher MDPI
dc.relation.journal Energies
dc.relation.orgunit Elektrische Energiesysteme
dc.relation.project Digitalisierte, rechtssichere und emissionsarme flugmobile Inspektion und Netzdatenerfassung mit automatisierten Drohnen
dc.rights.accessRights metadata only access
dc.subject Magnetic fields
dc.subject Non-invasive sensors
dc.subject Maxwell equations
dc.subject Fields visualization
dc.subject Smart grid
dc.subject Transmission lines
dc.subject Finite Element Analysis
dc.subject Unmanned Aerial Systems
dc.subject.ddc 620 Ingenieurwissenschaften
dc.title Modeling Magnetic Fields around Stranded Electrical Transmission Lines via Finite Element Analysis (FEA)
dc.type Forschungsartikel
dcterms.bibliographicCitation.originalpublisherplace Basel
dspace.entity.type Publication
hsu.opac.importErsterfassung 0705:08-02-24
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.issue 4
oaire.citation.volume 17
Files