Publication:
VOGUE: Answer Verbalization Through Multi-Task Learning

cris.customurl 16536
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Data Engineering
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 3a2553bc-4d23-4bae-a22f-5d92c868792c
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Kacupaj, Endri
dc.contributor.author Premnadh, Shyamnath
dc.contributor.author Singh, Kuldeep
dc.contributor.author Lehmann, Jens
dc.contributor.author Maleshkova, Maria
dc.date.issued 2021-09-11
dc.description.abstract In recent years, there have been significant developments in Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA systems only focus on answer generation techniques and not on answer verbalization. However, in real-world scenarios (e.g., voice assistants such as Alexa, Siri, etc.), users prefer verbalized answers instead of a generated response. This paper addresses the task of answer verbalization for (complex) question answering over knowledge graphs. In this context, we propose a multi-task-based answer verbalization framework: VOGUE (Verbalization thrOuGh mUlti-task lEarning). The VOGUE framework attempts to generate a verbalized answer using a hybrid approach through a multi-task learning paradigm. Our framework can generate results based on using questions and queries as inputs concurrently. VOGUE comprises four modules that are trained simultaneously through multi-task learning. We evaluate our framework on existing datasets for answer verbalization, and it outperforms all current baselines on both BLEU and METEOR scores. © 2021, Springer Nature Switzerland AG.
dc.description.version VoR
dc.identifier.citation Kacupaj, E., Premnadh, S., Singh, K., Lehmann, J., Maleshkova, M. (2021). VOGUE: Answer Verbalization Through Multi-Task Learning. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_34
dc.identifier.doi 10.1007/978-3-030-86523-8_34
dc.identifier.isbn 9783030865238
dc.identifier.issn 1611-3349
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16536
dc.language.iso en
dc.publisher Springer Nature Switzerland
dc.relation.conference European Conference, ECML PKDD 2021 Bilbao, Spain, September 13–17, 2021
dc.relation.journal Lecture Notes in Computer Science
dc.relation.orgunit University of Bonn
dc.rights.accessRights metadata only access
dc.subject Answer verbalization
dc.subject Knowledge graphs
dc.subject Multi-task learning
dc.subject Natural language generation
dc.subject Question answering
dc.title VOGUE: Answer Verbalization Through Multi-Task Learning
dc.type Konferenzbeitrag
dcterms.bibliographicCitation.booktitle Machine Learning and Knowledge Discovery in Databases. Research Track : European Conference, ECML PKDD 2021 Bilbao, Spain, September 13–17, 2021 Proceedings, Part III
dcterms.bibliographicCitation.originalpublisherplace Cham
dspace.entity.type Publication
hsu.uniBibliography Nein
oaire.citation.endPage 579
oaire.citation.startPage 563
oaire.citation.volume 12977
Files