Publication: VOGUE: Answer Verbalization Through Multi-Task Learning
cris.customurl | 16536 | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | Data Engineering | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Data Engineering | |
cris.virtual.departmentbrowse | Data Engineering | |
cris.virtual.departmentbrowse | Data Engineering | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | 3a2553bc-4d23-4bae-a22f-5d92c868792c | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Kacupaj, Endri | |
dc.contributor.author | Premnadh, Shyamnath | |
dc.contributor.author | Singh, Kuldeep | |
dc.contributor.author | Lehmann, Jens | |
dc.contributor.author | Maleshkova, Maria | |
dc.date.issued | 2021-09-11 | |
dc.description.abstract | In recent years, there have been significant developments in Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA systems only focus on answer generation techniques and not on answer verbalization. However, in real-world scenarios (e.g., voice assistants such as Alexa, Siri, etc.), users prefer verbalized answers instead of a generated response. This paper addresses the task of answer verbalization for (complex) question answering over knowledge graphs. In this context, we propose a multi-task-based answer verbalization framework: VOGUE (Verbalization thrOuGh mUlti-task lEarning). The VOGUE framework attempts to generate a verbalized answer using a hybrid approach through a multi-task learning paradigm. Our framework can generate results based on using questions and queries as inputs concurrently. VOGUE comprises four modules that are trained simultaneously through multi-task learning. We evaluate our framework on existing datasets for answer verbalization, and it outperforms all current baselines on both BLEU and METEOR scores. © 2021, Springer Nature Switzerland AG. | |
dc.description.version | VoR | |
dc.identifier.citation | Kacupaj, E., Premnadh, S., Singh, K., Lehmann, J., Maleshkova, M. (2021). VOGUE: Answer Verbalization Through Multi-Task Learning. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_34 | |
dc.identifier.doi | 10.1007/978-3-030-86523-8_34 | |
dc.identifier.isbn | 9783030865238 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/16536 | |
dc.language.iso | en | |
dc.publisher | Springer Nature Switzerland | |
dc.relation.conference | European Conference, ECML PKDD 2021 Bilbao, Spain, September 13–17, 2021 | |
dc.relation.journal | Lecture Notes in Computer Science | |
dc.relation.orgunit | University of Bonn | |
dc.rights.accessRights | metadata only access | |
dc.subject | Answer verbalization | |
dc.subject | Knowledge graphs | |
dc.subject | Multi-task learning | |
dc.subject | Natural language generation | |
dc.subject | Question answering | |
dc.title | VOGUE: Answer Verbalization Through Multi-Task Learning | |
dc.type | Konferenzbeitrag | |
dcterms.bibliographicCitation.booktitle | Machine Learning and Knowledge Discovery in Databases. Research Track : European Conference, ECML PKDD 2021 Bilbao, Spain, September 13–17, 2021 Proceedings, Part III | |
dcterms.bibliographicCitation.originalpublisherplace | Cham | |
dspace.entity.type | Publication | |
hsu.uniBibliography | Nein | |
oaire.citation.endPage | 579 | |
oaire.citation.startPage | 563 | |
oaire.citation.volume | 12977 |