Publication:
Smaller stencil preconditioners for linear systems in RBF-FD discretizations

cris.customurl 16470
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 122477ba-349c-4aa1-97c6-c7520f7e69d5
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Koch, Michael
dc.contributor.author Le Borne, Sabine
dc.contributor.author Leinen, Willi Günter
dc.date.issued 2024-04-20
dc.description Der Originalartikel steht unter der Lizenz CC-BY-4.0 Erscheint auch in Print: ISSN 1017-1398
dc.description.abstract Radial basis function finite difference (RBF-FD) discretization has recently emerged as an alternative to classical finite difference or finite element discretization of (systems) of partial differential equations. In this paper, we focus on the construction of preconditioners for the iterative solution of the resulting linear systems of equations. In RBF-FD, a higher discretization accuracy may be obtained by increasing the stencil size. This, however, leads to a less sparse and often also worse conditioned stiffness matrix which are both challenges for subsequent iterative solvers. We propose to construct preconditioners based on stiffness matrices resulting from RBF-FD discretization with smaller stencil sizes compared to the one for the actual system to be solved. In our numerical results, we focus on RBF-FD discretizations based on polyharmonic splines (PHS) with polynomial augmentation. We illustrate the performance of smaller stencil preconditioners in the solution of the three-dimensional convection-diffusion equation.
dc.description.version HSU-Of
dc.identifier.doi 10.1007/s11075-024-01835-7
dc.identifier.issn 1572-9265
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/16470
dc.language.iso en
dc.publisher Springer
dc.relation.journal Numerical Algorithms
dc.relation.orgunit High Performance Computing
dc.rights.accessRights metadata only access
dc.subject Preconditioner
dc.subject Radial basis function finite difference (RBF-FD)
dc.subject Meshfree method
dc.subject Polyharmonic spline
dc.subject Polynomial augmentation
dc.subject Iterative solver
dc.subject.ddc 000 Informatik, Wissen & Systeme
dc.subject.ddc 500 Naturwissenschaften
dc.title Smaller stencil preconditioners for linear systems in RBF-FD discretizations
dc.type Forschungsartikel
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography
Files