Publication:
Smaller stencil preconditioners for linear systems in RBF-FD discretizations

cris.customurl16470
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department122477ba-349c-4aa1-97c6-c7520f7e69d5
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorKoch, Michael
dc.contributor.authorLe Borne, Sabine
dc.contributor.authorLeinen, Willi Günter
dc.date.issued2024-04-20
dc.descriptionDer Originalartikel steht unter der Lizenz CC-BY-4.0 Erscheint auch in Print: ISSN 1017-1398
dc.description.abstractRadial basis function finite difference (RBF-FD) discretization has recently emerged as an alternative to classical finite difference or finite element discretization of (systems) of partial differential equations. In this paper, we focus on the construction of preconditioners for the iterative solution of the resulting linear systems of equations. In RBF-FD, a higher discretization accuracy may be obtained by increasing the stencil size. This, however, leads to a less sparse and often also worse conditioned stiffness matrix which are both challenges for subsequent iterative solvers. We propose to construct preconditioners based on stiffness matrices resulting from RBF-FD discretization with smaller stencil sizes compared to the one for the actual system to be solved. In our numerical results, we focus on RBF-FD discretizations based on polyharmonic splines (PHS) with polynomial augmentation. We illustrate the performance of smaller stencil preconditioners in the solution of the three-dimensional convection-diffusion equation.
dc.description.versionHSU-Of
dc.identifier.doi10.1007/s11075-024-01835-7
dc.identifier.issn1572-9265
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/16470
dc.language.isoen
dc.publisherSpringer
dc.relation.journalNumerical Algorithms
dc.relation.orgunitHigh Performance Computing
dc.rights.accessRightsmetadata only access
dc.subjectPreconditioner
dc.subjectRadial basis function finite difference (RBF-FD)
dc.subjectMeshfree method
dc.subjectPolyharmonic spline
dc.subjectPolynomial augmentation
dc.subjectIterative solver
dc.subject.ddc000 Informatik, Wissen & Systeme
dc.subject.ddc500 Naturwissenschaften
dc.titleSmaller stencil preconditioners for linear systems in RBF-FD discretizations
dc.typeForschungsartikel
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
Files