Publication:
MaMiCo: Parallel Noise Reduction for Multi-instance Molecular-Continuum Flow Simulation

cris.customurl 14251
cris.virtual.department High Performance Computing
cris.virtual.department High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtual.departmentbrowse High Performance Computing
cris.virtualsource.department a2b32daf-c95c-4b0f-8eaf-80f4b1c9dd99
cris.virtualsource.department 25ba2e6f-9989-47a4-aa6b-0908992396e8
dc.contributor.author Jarmatz, Piet
dc.contributor.author Neumann, Philipp
dc.date.issued 2019
dc.description.abstract Transient molecular-continuum coupled flow simulations often suffer from high thermal noise, created by fluctuating hydrodynamics within the molecular dynamics (MD) simulation. Multi-instance MD computations are an approach to extract smooth flow field quantities on rather short time scales, but they require a huge amount of computational resources. Filtering particle data using signal processing methods to reduce numerical noise can significantly reduce the number of instances necessary. This leads to improved stability and reduced computational cost in the molecular-continuum setting. We extend the Macro-Micro-Coupling tool (MaMiCo) – a software to couple arbitrary continuum and MD solvers – by a new parallel interface for universal MD data analytics and post-processing, especially for noise reduction. It is designed modularly and compatible with multi-instance sampling. We present a Proper Orthogonal Decomposition (POD) implementation of the interface, capable of massively parallel noise filtering. The resulting coupled simulation is validated using a three-dimensional Couette flow scenario. We quantify the denoising, conduct performance benchmarks and scaling tests on a supercomputing platform. We thus demonstrate that the new interface enables massively parallel data analytics and post-processing in conjunction with any MD solver coupled to MaMiCo.
dc.description.version NA
dc.identifier.doi 10.1007/978-3-030-22747-0_34
dc.identifier.isbn 9783030227463
dc.identifier.issn 1611-3349
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-85067611215
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/14251
dc.language.iso en
dc.relation.conference 20th International Conference on Computational Science ICCS 2020
dc.relation.journal Lecture notes in computer science
dc.relation.orgunit High Performance Computing
dc.relation.project Task-basierte Lastverteilung und Auto-Tuning in der Partikelsimulation
dc.rights.accessRights metadata only access
dc.title MaMiCo: Parallel Noise Reduction for Multi-instance Molecular-Continuum Flow Simulation
dc.type Conference paper
dspace.entity.type Publication
hsu.uniBibliography
oaire.citation.endPage 464
oaire.citation.startPage 451
oaire.citation.volume 11539
Files