Publication:
MaMiCo: Parallel Noise Reduction for Multi-instance Molecular-Continuum Flow Simulation

cris.virtual.departmentHigh Performance Computing
cris.virtual.departmentHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtual.departmentbrowseHigh Performance Computing
cris.virtualsource.departmenta2b32daf-c95c-4b0f-8eaf-80f4b1c9dd99
cris.virtualsource.department25ba2e6f-9989-47a4-aa6b-0908992396e8
dc.contributor.authorJarmatz, Piet
dc.contributor.authorNeumann, Philipp
dc.date.issued2019
dc.description.abstractTransient molecular-continuum coupled flow simulations often suffer from high thermal noise, created by fluctuating hydrodynamics within the molecular dynamics (MD) simulation. Multi-instance MD computations are an approach to extract smooth flow field quantities on rather short time scales, but they require a huge amount of computational resources. Filtering particle data using signal processing methods to reduce numerical noise can significantly reduce the number of instances necessary. This leads to improved stability and reduced computational cost in the molecular-continuum setting. We extend the Macro-Micro-Coupling tool (MaMiCo) – a software to couple arbitrary continuum and MD solvers – by a new parallel interface for universal MD data analytics and post-processing, especially for noise reduction. It is designed modularly and compatible with multi-instance sampling. We present a Proper Orthogonal Decomposition (POD) implementation of the interface, capable of massively parallel noise filtering. The resulting coupled simulation is validated using a three-dimensional Couette flow scenario. We quantify the denoising, conduct performance benchmarks and scaling tests on a supercomputing platform. We thus demonstrate that the new interface enables massively parallel data analytics and post-processing in conjunction with any MD solver coupled to MaMiCo.
dc.description.versionNA
dc.identifier.doi10.1007/978-3-030-22747-0_34
dc.identifier.isbn9783030227463
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85067611215
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/14251
dc.language.isoen
dc.relation.conference20th International Conference on Computational Science ICCS 2020
dc.relation.journalLecture notes in computer science
dc.relation.orgunitHigh Performance Computing
dc.relation.projectTask-basierte Lastverteilung und Auto-Tuning in der Partikelsimulation
dc.rights.accessRightsmetadata only access
dc.titleMaMiCo: Parallel Noise Reduction for Multi-instance Molecular-Continuum Flow Simulation
dc.typeConference paper
dspace.entity.typePublication
hsu.uniBibliography
oaire.citation.endPage464
oaire.citation.startPage451
oaire.citation.volume11539
Files