Publication: End-to-end MLOps integration: a case study with ISS telemetry data
cris.customurl | 15316 | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtualsource.department | d3e00cb1-d1ab-4c8f-882e-c033ff27bdd1 | |
cris.virtualsource.department | 5fa68b15-d2ec-4da8-8f1a-cac6ea0a773f | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | f318ef77-db4b-4956-9a01-97eee1ab0454 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Steude, Henrik Sebastian | |
dc.contributor.author | Geier, Christian | |
dc.contributor.author | Moddemann, Lukas | |
dc.contributor.author | Creutzenberg, Martin | |
dc.contributor.author | Pfeifer, Jann | |
dc.contributor.author | Turk, Samo | |
dc.contributor.author | Niggemann, Oliver | |
dc.date.issued | 2024-03 | |
dc.description.abstract | Kubeflow integrates a suite of powerful tools for Machine Learning (ML) software development and deployment, typically showcased independently. In this study, we integrate these tools within an end- to-end workflow, a perspective not extensively explored previously. Our case study on anomaly detection using telemetry data from the International Space Station (ISS) investigates the integration of various tools—Dask, Katib, PyTorch Operator, and KServe—into a single Kubeflow Pipelines (KFP) workflow. This investigation reveals both the strengths and limitations of such integration in a real-world context. The insights gained from our study provide a comprehensive blueprint for practitioners and contribute valuable feedback for the open source community developing Kubeflow. | |
dc.description.version | VoR | |
dc.identifier.doi | 10.24405/15316 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/15316 | |
dc.language.iso | en | |
dc.publisher | UB HSU | |
dc.relation.conference | ML4CPS – Machine Learning for Cyber-Physical Systems | |
dc.relation.orgunit | Informatik im Maschinenbau | |
dc.relation.orgunit | Just Add AI | |
dc.relation.orgunit | Airbus Defence & Space | |
dc.relation.orgunit | Lufthansa Technik | |
dc.rights.accessRights | open access | |
dc.subject | MLOps | |
dc.subject | Kubeflow | |
dc.subject | ISS | |
dc.subject | Anomaly detection | |
dc.title | End-to-end MLOps integration: a case study with ISS telemetry data | |
dc.type | Conference paper | |
dcterms.bibliographicCitation.booktitle | Machine learning for cyber physical systems | |
dcterms.bibliographicCitation.originalpublisherplace | Hamburg | |
dcterms.isPartOf | https://openhsu.ub.hsu-hh.de/handle/10.24405/16610 | |
dspace.entity.type | Publication | |
hsu.uniBibliography | ✅ |