Publication: Towards the generation of models for fault diagnosis of CPS using VQA models
cris.customurl | 15314 | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtualsource.department | 5a48592a-0501-4524-a72f-cd50a6a1edcc | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | f318ef77-db4b-4956-9a01-97eee1ab0454 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Merkelbach, Silke | |
dc.contributor.author | Diedrich, Alexander | |
dc.contributor.author | Enzberg, Sebastian von | |
dc.contributor.author | Niggemann, Oliver | |
dc.contributor.author | Dumitrescu, Roman | |
dc.date.issued | 2024-03 | |
dc.description.abstract | In many use cases cyber-physical systems are employed to produce products of small batch sizes as efficiently as possible. From an engineering standpoint, a major drawback of this flexibility is that the architecture of the cyber-physical system may change multiple times over its lifetime to accommodate new product variants. To keep a cyber-physical system working normally it has become common to employ fault diagnosis algorithms. These algorithms partly rely on physical first-principles models that need to be updated when the architecture of the system changes which usually has to be done manually. In this article we present a practical approach to obtain such a first-principles model through evaluating piping and instrumentation diagrams (P&IDs) with visual questions answering (VQA) models. We demonstrate that it is possible to leverage VQA models to construct physical equations which are a preliminary stage for the creation of models suitable for fault diagnosis. We evaluate our approach on OpenAIs GPT-4 Vision Preview model using a P&ID we created for a benchmark water tank system. Our results show that VQA models can be used to create physical first-principles models. | |
dc.description.version | VoR | |
dc.identifier.doi | 10.24405/15314 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/15314 | |
dc.language.iso | en | |
dc.publisher | UB HSU | |
dc.relation.conference | ML4CPS – Machine Learning for Cyber-Physical Systems | |
dc.relation.orgunit | Informatik im Maschinenbau | |
dc.relation.orgunit | Fraunhofer Institute for Mechatronic Systems | |
dc.relation.orgunit | Hochschule Magdeburg-Stendal | |
dc.rights.accessRights | open access | |
dc.subject | Visual question | |
dc.subject | Large language model | |
dc.subject | Fault diagnosis | |
dc.subject | First-principles model | |
dc.subject | Application of LLMs | |
dc.title | Towards the generation of models for fault diagnosis of CPS using VQA models | |
dc.type | Conference paper | |
dcterms.bibliographicCitation.booktitle | Machine learning for cyber physical systems | |
dcterms.bibliographicCitation.originalpublisherplace | Hamburg | |
dcterms.isPartOf | https://openhsu.ub.hsu-hh.de/handle/10.24405/16610 | |
dspace.entity.type | Publication | |
hsu.uniBibliography | ✅ |